
Nanocomposites and Nanotechnologies in Aerospace Research

Authors: Ion Dinca, Victor Manoliu, Adriana Stefan, Ana Stan, Sorina Ilina

NANOMATERIALS AND NANOTECHNOLOGIES

The interest in nanomaterials and nanotechnologies is a direct consequence of the synthesis of fulerens in 1985 (Smoley and Croto), the third existence form of carbon, a stable and an ordered structure, besides the already existing as diamond and graphite.

APPLICATIONS OF NANOMATERIALS

- In aircraft construction the nanocomposites represent an advanced material solution:
 - In aircraft construction as strengthening element for the structure (stringers, frames) or as skin for the honeycomb type structures use at wings and fuselage;
 - Base materials for high temperatures, the nano carbon-carbon composites were first developed for the aerospace technology (components and missiles, re-entry vehicles, space shuttles and as a brake lining and brake disk material for civil and military aircraft. These materials with nanoadditivated ceramic matrix represents the potential unique solution for the radoms of the hypersonic airplanes;
 - Nanocomposites with the form of zirconia based complex nanopowders are used as thermal protection for pieces of turboengines;
 - INCAS researches regarding nanomaterials and nanotechnologies has a start stage the projects form the CEEX programme 2005 and they are reffering to two types of nanocomposites:
 - Polymeric nanocomposites additivated with carbon nanotubes and nanoclays
 - ZrO₂ based nanocoatings as thermal barrier coatings

RESEARCH DIRECTIONS

Nanocomposites

- Polymer nanocomposites with carbon nanotubes and nanoclays;
- Carbon fibre nanoadditivated polymer matrix composites;
- Glass fibre nanoadditivated polymer matrix composites;
- Carbon-carbon composites (nanoceramics matrix);
- Hybrid metal/fiber composites (Graal type) with nanoaddtivated matrix;

Nanotechnologies

Multilayered structures TBC (thermal barrier coatings) type Me /MeCrAlY/ $ZrO_{2}Y_{2}O_{3}$;

Thermal barrier coatings for turboengines.

Thermal shock test installation

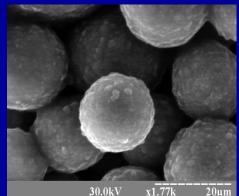
EXPERIENCE

Advanced materials for aerospace industry: carbon-carbon composites mesophasic matrix with nanotubes fillers and hybrid fibre/metal composites –X1C05 –Compas

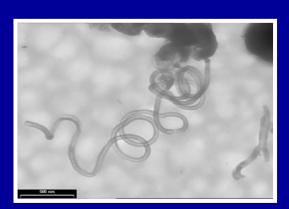
Nanocomposites polymer-nanocarbon and polymer-nanoclays – NANOCHRASN

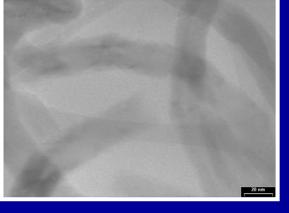
> Advanced composite structures for aerospace and transportation –SUPERSOLID

Advanced materials for aerospace industry and transport: polymer nanocomposites-carbon/ glass fiber reinforced structure additivated with carbon or silicon carbide – MAVIAT


Multilayered materials for extreme heat conditions in aeronautics. Installations and test method- MMCTE

Compositional gradient materials based on micro-and nanostructured zirconia for thermal-resistant structures with applications in energy and aerospace industry - GRAZIR

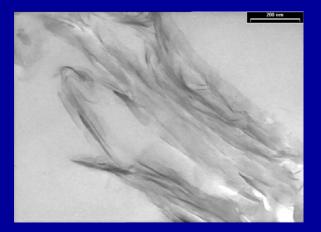


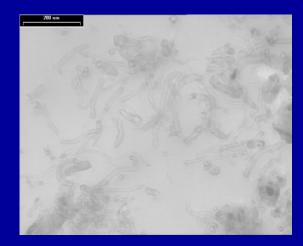

NANOMATERIALS

Carbon-carbon composites consisting of a carbon fiber reinforced structure embedded in a polymer matrix or mesophases that through a proper heat treatment transforms all in carbon;

Oil mesophase additived with carbon nanotubes

Tubular structure of MWCNTs


Carbon nanofibres


NANOMATERIALS

Nanocomposites with epoxy or polyamide matrix additivated with two types of nanofillers: laser-synthesized nanocarbon and layered silicate

Structural carbon fiber reinforced composites with a matrix made from the two types of nanocomposites.

Nanocomposite Epoxy/ montmorilonite

Nanocomposite Epoxy/carbon nanotubes

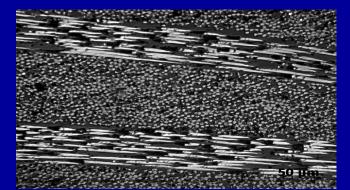
Thermo-mechanical results for the system matrix + 2% nanoadditive

No	The material	Tensile	Shore	Thermal					
		strength MPa	Hardness	stability °C		No	The material	Modulus of	
1	P 401	95	75	50		1	P401	elasticity	
2	P401 + 2% Montmorillonite	102.5	83	56				x 10 ⁴	
	30B							2.8	
3	P 401 + 2% Montmorillonite 93A	92.2	83	56		2	P 401 + 2% MWNTs	3.42	
4	P 401 + 2% C ₂ H ₂ /C ₂ H ₄	115	81	59		3	P 401 + 2%	3.60	
5	P 401 + 2% C ₂ H ₂ /SF ₆	85 - 90	79	56			C_2H_2/C_2H_4		
6	P 401 + 2% C ₆ H ₆ /C ₂ H ₂	86	79	56		4	P401 + 2% Montmorillonite 30B	3.1	
7	P 401 + 2% MWNTs –China	121.8	85	59					
8	P 401 + 2% SWNTs– China	96	77	55		5	$P 401 + 2\% C_2H_4/C_6H_6/N_2O$	3.6	
9	P 401 + 2% MWNTs -Greece	98	77	55					
11	P401+2% C ₂ H ₄ /C ₆ H ₆ /N ₂ O	120	83	57					

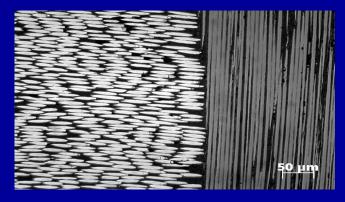
•P 401 – the epoxy resin

•C2H2/C2H4 - laser synthesized nanocarbon particles (INFLPR)

•C2H2/SF6 – laser synthesized nanocarbon particles (INFLPR)


•C6H6/C2H2 – laser synthesized nanocarbon particles (INFLPR)

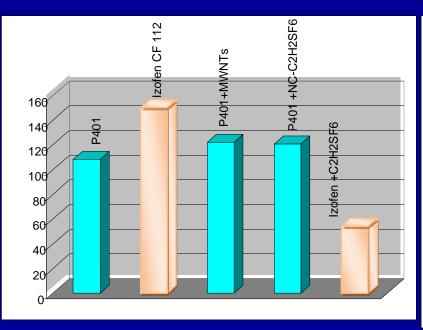
•C2H4/C6H6/N2O – laser synthesized nanocarbon particles (INFLPR)

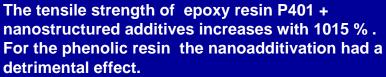

Nanocomposites carbon / glass fibre- nanoadditivated epoxy resin Microstructural analysis

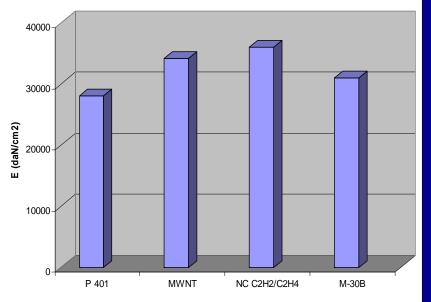
Sample carbon fibre/ non-additivated matrix (200x)

Sample carbon fibre/ non-additivated matrix (200x) –cross section

Sample carbon fibre/ nanoadditivated matrix (200x)




Fairing of the landing gear (hybrid FC/Al epoxy matrix composites)

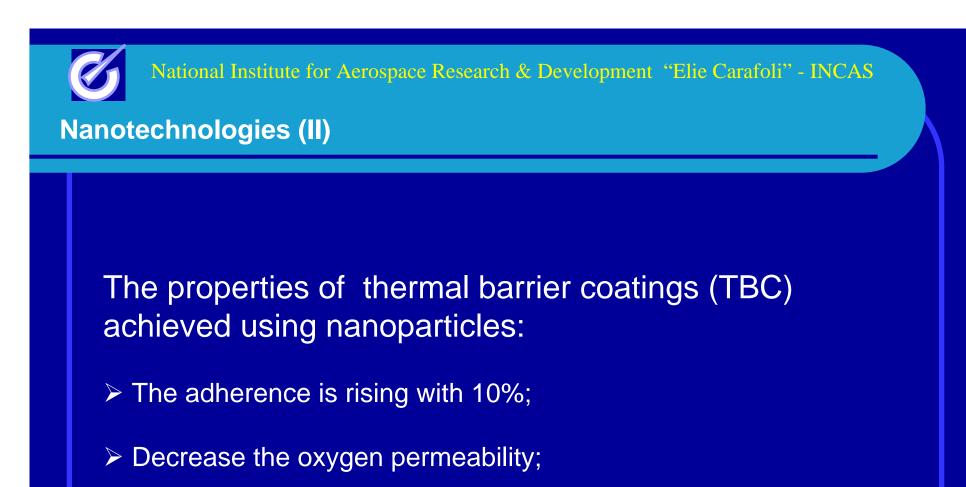

Thermo-mechanical and tribological properties of nanocomposites carbon / glass fiber – nanoadditivated epoxy resin

No.	The material	Tensile strength MPa	Modulus of Elasticity MPa	Shore Hardness	Thermal Stability ⁰ C	Friction coefficien t
1	Rasina epoxi P401	95	2.8 x10 ⁴	75	55	0.2
2	CF/P401	638	1.1 x10 ⁴	86	130	0.132
3	GF/P401	416	2.3 x10 ³	83	129	0.25
4	CF/P401+MWNTs- functionalized(2%)	490.7	1.38 x10 ⁴	87	131	0.134
5	CF/P401+MWNTs	490	1.38 x10 ⁴	87	136	0.134
6	CF/P401+SWNTs	480	1.38 x10 ⁴	86	128	0.130
7	CF/P401+carbon nanofibres	430	1.28 x10 ⁴	85	135	0.130
8	CF/P401+nanocarbon $(C_2^{-}H_2^{3-}/C_2^{-}H_4)$	650.6	1.36 x10 ⁴	88	138	0.130
9	CF/ P401+Montmorilonit	440		87	130	0.143
10	GF/ P401+Montmorilonit	366		86	120	0.22
11	GF/ P401+ MWNTs-functionalized	391.4		85	120	0.19

Beneficial effects of nanoaddtitives

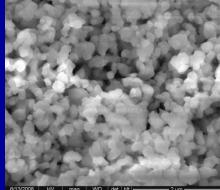
The modulus of elasticity epoxy resin P401 + nanostructured additives increases with 20-25%

Nanotechnologies (II)

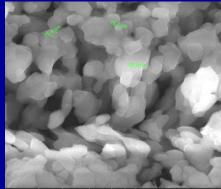

Nanocoatings

Multilayer structure, ceramics, temperatures resistant, thermal shock, corrosive and erosive wear, fritting, etc. applied at turbo engines and modern co-generative systems;

>**ZrO**₂ based thermal barrier coatings;

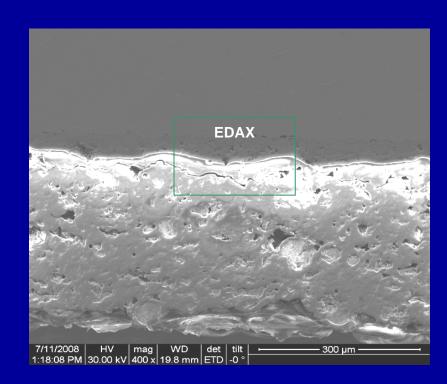

>Monolayer protections, vitro ceramics, related to functional conditions of turbo engines for "hot parts" protections;

➢ Mono and multilayers protection, for complex alloys, temperature resistant, corrosive and erosive wear, liquid metal contact resistant, related to vital component from siderurgy- tuyeres, lance tips, etc.;

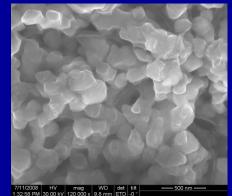


 \succ Increase the resistance at quick thermal shock with 100°C/ sec.

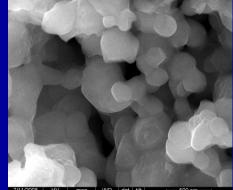
SEM images of thermal barrier coatings with nanoparticles



6/13/2008 HV mag WD det tilt 11:05:26 AM 30.00 kV 60 000 x 9.8 mm ETD 0 °

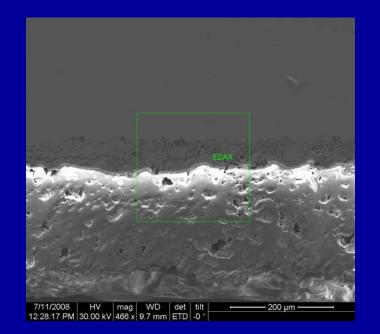

6/13/2008 HV mag WD det tilt 10:59:39 AM 30.00 kV 120 000 x 9.7 mm ETD 0 °

Zirconia nanoparticles observed at high resolutions (x60 000; x120 000)



SEM image – TBC coatings **Me /MeCrAIY/ ZrO₂, Y₂O₃**

SEM images of thermal barrier coatings with nanoparticles



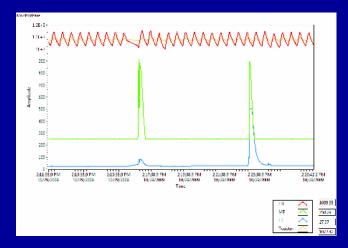
Zirconia powder partially compacted (x120.000)

7/11/2008 HV mag WD det tilt 12:37:04 PM 30.00 kV 120 000 x 9.8 mm ETD -0 °

Zirconia powder partially compacted – after quick thermal shock test (x120.000)

SEM image of sample **Me /MeCrAIY/ ZrO₂Y₂O₃**

submitted at quick thermal shock test


After the thermal cycling there is formed a TGO (thermal grow oxyde) sublayer associated with the delamination process

Thermal shock test installation- QTS2

Quick thermal shock test installation conceived and achieved by INCAS is going to be patented;
The installation and the method allows the comparative evaluation of materials reported to the wear resistance;
The thermal shock test corresponds to heating/cooling speeds of 100°C/sec witch appears in the operation of turbo engines (take-off, landing);

•The thermal shock test equipped with acquisition data system (LabView), it is a real technical solution

LabView data acquisition diagram

Testing temperature: 1700°C, Specimen heating speed – max 100°C/sec, Specimen cooling speed – max 100°C/sec, Operate in manual and automatic cycle;

INTERNATIONAL PROPOSALS

The FP7 project proposal HyLam will perform an in-depth technology study of hybrid composite laminates for their use in primary loaded joints of civil aircraft applications; the project comprise a study regarding the nanoadditivated hybrid laminates;

Partners: DLR-Germany, ARNVA- Spain,

ARTTIC – France, ASCO INDUSTRIES N.V. – Belgium, CoExPair- Belgium, HENKEL KGaA- Germany, INEGI- Portugal, NLR- Netherlands, SHORT BROTHERS PLC- United Kindom, STORK SP AEROSPACE B.V.- Netherlands, UGNA- Spain.

The FP7 project proposal, Comp-air aims to explore the existing metal-composite technologies in the small aircraft industry and to make an important step towards the reduction of aircraft development costs;

> Partners: Corvus Aircraft Ltd.- Hungary, Slot Consulting Ltd.- Hungary, CENAERO-Belgium, Fraunhofer- Germany, REA – Tech Ltd.- Hungary, KhAI- Ukraine, ATARD-Turkey