ICB expertise in nanoscience and related areas; recent results and opportunities for collaboration

<u>Overview</u>

Monitoring & Detection- concepts

- **Bio-affinity Sensors**
- Cellular Platforms

Microscopic Modeling

 Quantitative analysis of the interaction between pore forming compounds (detergent & toxins) and lipid membranes

- In situ assessement of ROS release
- Summary

Basic Research

Applied Research

"10 ani de nanostiinta si nanotehnologie" 03.02.2010

Research Infrastructure within the International Centre of Biodynamics

Cell Cultures & Electrophysiology measurements assays

Electro-optical analysis

SI1260A Impedance analyzer - Multichannel Cell Test 1470E

Agilent 4294A HP 3585 A Spectrum Impedance Analyser Analyser

TIRF microscope Zeiss Axio Observer 1

NIKON Eclipse E 400

Epifluorescence microscope

Glomax Luminometer

•SPR technology: Biacore 3000 & dedicated working area

Thermo Evolution 600 with VEEmax

BioAFM + Structuring Facilities

4 FP's projects:

NANOMAGMA	7th FP (2008-2011)
ROBIOS	6th FP (2005-2008) - coordinator
CHARPAN	6th FP (2005-2009)
AFRAMILK	5th FP (2000-2004)

3 projects within Romania - Flanders **Bilateral Agreement** (2000-2003)& (2004-2008);

Projects with Singapore, US, Japan, Germany, France within bilateral agreements;

Two **NATO** –Security through Science Reintegration Grants (2005-2007 & 2007-2008);

"10 ani de nanostiinta si nanotehnologie" 03.02.2010

Analytical Methods

SPR Surface plasmon resonance is an optical technique that enables real-time monitoring of changes in the refractive index of a thin film close to a surface.

Differential Electrical Impedance Spectroscopy (DEIS) is a method providing complex spectra of the impedance of a sample versus a <u>reference channel</u>.

Aim

Rapid, label free detection of target compounds, from low molecular weight to whole cells, using functionalized-bioaffinity platforms

How?

DELS+SPR & bioaffinity assays using FIA

Results

The applicability of both methods for detection of low molecular weight analytes was tested using a competitive approach (gentamicin detection)

Cellular Sensing Platforms- interconnected cells

T. Sandu, D. Vrinceanu and E. Gheorghiu*, (2010) Phys Rev E

- ✓ Conductivity of the membrane & of the intracellular medium ;
 ✓ Cell Size;
 ✓ Change feature % Status of gap is patients
- ✓ Shape factors & Status of gap junction;
- ✓Assessment of adherence

The effect of pore forming compounds (TritonX 100) a) as revealed by impedance

The effect of pore forming compounds (TritonX 100) b) as revealed by SPR

International Centre of Biodynamics

The effect of pore forming compounds (TritonX 100) c) as revealed by TIRFM set-up (using Acridine Orange)

Assessment of the multi-phase interaction process between Melittin and a lipid membrane

8000

6000

4000

2000

-2000

-4000

-6000

0

Gheorghiu *et al*, *Biosensors and Bioelectronics* (2009) Olaru *et al*, *Phys Chem* B (2009)

Multi-phase Interaction between melittin and

membrane

3

4

2000

Time (s)

5

3000

4000

• Experiment steps

- A cleaning the sensor surface
- B lipid membrane formation (POPC)
- C removal of loosely bound structures
- D melittin interaction with the lipid membrane
- E regeneration of sensor surface

1. M-L Association

Ő.

- 2. M Insertion into lipid membrane
- 3. Pore formation
- 4. Lipid layer destruction

1000

5. M- chip association

Kinetic model + Transfer matrix approach — Quantitative parameters

Results

Effect of calcium oxalate on renal cells as revealed by a biosensor for SuperOxide - the measuring chamber

Gáspár et al., Biosens. Bioelectron. (2009)

Summary

- Bioaffinity sensors provide real time evaluation of kinetics of biomolecular interactions supporting sensitive detection;
 Cellular Platforms investigated by Electrochemical & Impedance Assays allow for noninvasive access to:
 - ROS release following stimulation with Ca(COO)₂
 - Shape, size and electrical parameters of interconnected cells
 - Cell-cell and cell-surface interaction
- In conjunction with pore forming compounds, combined IS-SPR-TIRFM assays reveal <u>complex processes taking place within cell monolayer</u>: <u>from cell swelling to changes at junction and metabolic levels</u>.
- We assess and quantitatively describe the whole interaction process between a pore forming compound and a lipid membrane and the relationship via transfer matrix to the measured SPR data.
- A novel procedure to analyse the reflectivity of complex multilayered structures, including superparamagnetic nanometric-films.
- □ The response of a biosensor (bioaffinity or cellular platform) to a specific stimulus may not exhibit a monotonous evolution, therefore the entire process should be monitored.... biodynamics

/

