MULTIPROTECT

SiO, based hybrid inorganic-organic films doped with oxide nanoparticles for corrosion protection

Powders preparation

Monocomponent and binary nanosized powders

Sample	Composition	Reagents	Particle Size
TiO ₂	100	Ti(OC ₂ H ₅) ₄	10 nm
ZrO ₂	100	Zr(OC ₃ H ₇) ₄	20 – 50 nm
CeO ₂	100	Ce(NO ₃) ₃ .6H ₂ O	10 – 50 nm
CeO ₂	100	Ce(CH ₃ CO ₂) ₃ .xH ₂ O	3 – 5 nm
$ZrO_2 - CeO_2$	80 : 20	Zr(OC ₃ H ₇) ₄ , Ce(NO ₃) ₃ ·6H ₂ O	~ 10 nm
$ZrO_2 - CeO_2$	80 : 20	ZrO(NO ₃) ₄ , Ce(NO ₃) ₃ ·6H ₂ O	1 – 2 nm
TiO ₂ – CeO ₂	80 : 20	Ti(O-iC ₃ H ₇) ₄ , Ce(NO ₃) ₃ .6H ₂ O, NH ₄ OH	2 – 3 nm
$TiO_2 - CeO_2$	80 : 20	Ti(O-iC ₃ H ₇) ₄ , Ce(NO ₃) ₃ .6H ₂ O, urea	~10 nm
TiO ₂ – CeO ₂	50 : 50	Ti(O-iC ₃ H ₇) ₄ , Ce(NO ₃) ₃ .6H ₂ O, NH ₄ OH	2 – 4 nm
TiO ₂ – CeO ₂	80 : 20	Ti(O-iC ₃ H ₇) ₄ , (CH ₃ CO ₂) ₃ Ce.xH ₂ O	5 – 10 nm
$TiO_2 - CeO_2$	50 : 50	Ti(O-iC ₃ H ₇) ₄ , (CH ₃ CO ₂) ₃ Ce.xH ₂ O	5 nm
V ₂ O ₅ -CeO ₂	50:50	V ₂ O ₅ , Ce(NH ₄) ₂ (NO ₃) ₆	10-20 nm

Drop-test results for the most significant powders

Sample	24h	48h	72h
CeO ₂	1	3	5
ZrO ₂ -CeO ₂	5	6	6, surface pasivation
TiO ₂ -CeO ₂ (80:20)	3	3	0, surface pasivation
TiO ₂ -CeO ₂ (50:50)	3	4	6
V ₂ O ₅ -CeO ₂ (50:50) dried	1	2	2
V ₂ O ₅ -CeO ₂ (50:50) thermally treated	5	5	7

Reproducibility test of powder preparation

TEM micrographs for TiO2-CeO2 powders: 80:20 thermally treated at 400 °C

Coatings preparation

Experimental conditions used for coatings preparation by dip method

- Matrix composition: 65%TEOS+35%TSPM
- Coatings composition: matrix with addition of 5-10% non-functionalized binary [80%TiO₂(ZrO₂)-20%CeO₂] previously prepared powders
- Deposition of the coatings was realized by dip coating with a withdrawal rate of 5 /min. on Al2024 and Mg substrates. One or two layers were deposited Thermal treatment of the obtained films was realized at 120 for 2 hours

EIS Bode for Al2024 alloys coated with silica based matrix and TiO2-CeO2 powder immersed in NaCl 0.05 M, as compared with the uncoated substrate (determined at Instituto de Cerámica y Vidrio (ICV), Madrid, Spain)

EIS Bode for Mg alloys coated with silica based matrix and TiO₂-CeO₂ powder immersed In NaCl 0.05 M, as compared with the uncovered substrate (determined at ICV)

Third functions results (determined at CASTI)

Sample	Contact angle	Scrach, g	Adhesion
Coating deposited in Al2024	$73,3\pm2,3$	850 ± 50	5B (0%)
Coatings deposited on Mg ZK10	72 ± 3	380 ± 50	5B (0%)
Coatings deposited on Mg AZ31	73 ± 6	260 ± 50	5B (0%)

Results on demonstrators

Conditions used at robotic spraying by Fraunhofer Gesellschaft. IPA Stuttgart. Germany

	U ,	
V	Thickness µ	
150	14,9	
300	6,9	
400	4,8	
600	3,1	

Coatings characterisation

SEM and AFM images of the coatings deposited by robotic spraying at IPA (V300-up: V400-down)

Support was delivered by Hellenic Aerospace Industry S.A. (HAI)

Schimatari, Greece Acknowledgement to the EC:

This poster was generated in the context of the MULTIPROTECT project funded under the 6-th Framework Programme of the European Community (contract N0 NMP 3-CT-2005-011783) The authors are responsible for its content, it does not represent the opinion of the European Community and the Community is not responsible for any use that might be made of the information contained therein

AA2024

Sol-gel coating	Film thickness	Curring conditions	Viscosity	Surface tension
SiO ₂ -based hybrid matrix	7 µm	120ºC, 2h	3.1	23.6 (mN/i
doped with binary TiO ₂ - CeO ₂ powder	(5-10 µm)		(mPass)	
Corrosio Rese	on tests (measur earch Center Ger	ed at Deutschland (rmany (EADS), Mun	GmbH, Corpora ich, Germany	ite
Q-Panel condensation Test >No delamination or blistering after 500 hours test duration			Salt spray test	t bare (168 h

Suspension used and coatings obtained on demonstrator

Salt spray test painted (500 h)

> 100 pits after 168h

AA2024 - 168h AA7475 - 168h

Filiform corrosion test (500 hours)

