

SYNTHESIS OF CALCIUM POROUS ALGINATE BEADS AND THEIR USE FOR ADSORPTION OF 2-NITROPHENOL FROM AQUEOUS SOLUTIONS

Sandu Peretz¹, Dan-Florin Anghel¹, Manuela Florea-Spiroiu² and Daniela Bala²

¹Institute of Physical Chemistry "I. Murgulescu", Department of Colloids, 202 Spl. Independentei, 060021, Bucharest, Romania, sanduperetz@gmail.com ²University of Bucharest, Department of Physical Chemistry, 4-12 Regina Elisabeta Blvd., 030018, Bucharest, Romania

SUMMARY

Alginate is a biopolymer used in recent years to remove cationic pollutants from waste waters [1]. In order to increase the adsorption surface, porous calcium alginate/sodium dodecyl sulfate (SDS) beads were prepared [2]. For the synthesis of the beads, alginic acid sodium salt, SDS as foaming agent, sodium chloride as porogen agent, and calcium chloride (CaCl₂) as cross-linker were used. The crosslinking process was studied at different CaCl₂ concentrations (1, 5, 10 % wt). The lyophilized samples of calcium alginate/SDS beads were structurally investigated by Fourier Transform Infrared Spectroscopy [3], the pore dimensions and the morphology of calcium alginate matrices were determined by Scanning Electron Microscopy. The calcium porous alginate beads were successfully used to remove the 2-nitrophenol (2-NP) from water. The adsorption of 2-nitrophenol is dependent on pH of the medium, and the adsorption onto calcium alginate/SDS beads reaches a maximum at pH = 7. The sorption and kinetic experiments indicated that the removal efficiency increases with the amount of calcium alginate/SDS beads and decreases with rising of the initial contaminant concentration. The uptake of 2-nitrophenol is rapid in the first 12 hours, and slows down thereafter. The kinetics experiments showed that adsorption 2-nitophenol onto calcium alginate/SDS beads takes place according to the Langmuir model [4].

SEM IMAGES

EGG-BOX MODEL

Surface porosity of CaAlg-3

Beads used in the experiments: CaAlg1-with 1% wt CaCl₂ CaAlg2-with 5% wt CaCl₂ CaAlg3-with 10% wt CaCl₂

Surface porosity of CaAlg-1

(1) calcium bound; (2) Na⁺ that remains in the gel to balance the unoccupied carboxyl groups; (3) free, unbound Ca⁺² in the gel phase; (4) free, unbound cationic contaminants in the gel phase; dashed lines represent electrostatic interaction between 2-NP and unoccupied carboxyl groups

EFFECT of pH

ADSORPTION MODELS

ADSORPTION ISOTHERM

pН

Efficiency of 2-NP removal at different initial pollutant concentration as a function of the amount of Alg-1 beads

Efficiency of 2-NP removal at different initial pollutant concentration as function of amount of Alg-3 beads

CONCLUSIONS

• Biopolymeric porous beads with a 3-D interconnected pores and lamellar structures were obtained using alginate in the presence of sodium dodecyl sulfate, NaCl as foaming and porogen agents, and CaCl₂ as cross-linker.

• The dimension of the pores and the structure of alginate matrices are influenced by the concentration of calcium ions added in the system. SEM data show a variation of pore sizes and morphology by changing the Ca²⁺ concentration.

• FTIR and SEM data reveal that the optimum concentration of CaCl₂ for cross-linking the alginate/SDS is of 5 wt %. At 10 wt% CaCl₂, the matrix of calcium alginate/SDS is lamellar, being influenced by the self-assembly of the anionic surfactant.

• The experiments show that the 2nitrophenol derivative is efficiently removed by alginate beads from wastewater.

• The retention efficiency of 2-nitrophenol increases with increasing the amount of calcium alginate/SDS beads, and decreases with rising of initial pollutant concentration.

Removal kinetics of 2-NP (C= 2x10⁻⁵M) on different amounts of Alg-1 beads, at pH=7, T= 25 °C

References

- 1. Erdem M., Yüksel E., Tay T., Çimen Y., Türk H., J. Coll. Interf. Sci., 2009, 333, pp.40-48.
- 2. Wang Z., Zhang Q., Konno M., Saito S., Biopolymers, 1993, 33, pp.703-711.
- 3. Nakamoto K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., 1986, Wiley,

New York.

4. Wu Y., Zhang S., Guo X., Huang H., Bioresour. Technol., 2008, 99, pp.7709–7715.

Removal kinetics of 2-NP (C= 2x10⁻⁵M) on different amounts of Alg-2 beads, at pH=7, T= 25 ^oC Removal kinetics of 2-NP (C= 2x10⁻⁵M) on different amounts of Alg-3 beads, at pH=7, T= 25 °C • The kinetics of 2-nitrophenol removal has three stages. The first is rapid and removes up to 75% of the pollutant. The second and the third are slow, and remove 94-95% of the initial amount of 2-nitrophenol.

• The adsorption of 2-nitrophenol onto calcium alginate/SDS beads obeys the Longmuir isotherm.

Acknowledgements

This research was supported by Romanian Academy, "Ilie Murgulescu" Institute of Physical Chemistry. The support of EU (ERDF) and Romanian Government (POS-CCE O2.2.1 project INFRANANOCHEM, No. 19/2009.03.01) and of (UEFISCDI) (Project PN-II-ID-PCE-2011-3-0916, Contract No. 177/2011) is gratefully acknowledged.

A 12-a ediție a Seminarului Național de Nanoștiință și Nanotehnologie, Biblioteca Academiei Române, București

