

TiO<sub>2</sub>/WO<sub>3</sub>/noble metal nanoarchitectures' photocatalytic activity: "from the degradation intermediates to structural peculiarities"



G. Kovács<sup>a,b</sup> & L. Baia<sup>a,c</sup>, A. Vulpoi<sup>a,c</sup>, T.Radu<sup>a,c</sup>, É. Karácsonyi<sup>d</sup>, K.Norén<sup>e</sup>, A. Dombi<sup>c</sup>, K. Hernádi<sup>c</sup>, V. Danciu<sup>b</sup>, S. Simon<sup>a,c</sup>, <u>Zs. Pap</u><sup>a,b,d,\*</sup>

\*pzsolt@chem.ubbcluj.ro

a – Faculty of Physics, Babeş–Bolyai University, M. Kogălniceanu 1, RO–400084 Cluj–Napoca, Romania;

b – Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János 11, RO–400028 Cluj-Napoca, Romania

c – Institute for Interdisciplinary Research on Bio-Nano-Sciences, Treboniu Laurian 42, RO- 400271 Cluj-Napoca, Romania

d – Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, Tisza Lajos krt. 103, HU–6720 Szeged, Hungary;

e – Chemical Physics Department, Chemical Centre, Lund University, Lund, Sweden



## Introduction

#### Photocatalysis?

- Electron-hole generation, under UV- or visible light
- The charge carriers are participating in complex reaction chains pollutant degradation





- **Composite materials why are we making them?** 
  - To exploit the components' synergistic effects photocatalysis
    - Increased adsorption properties (carbon materials)
    - Activity under visible light  $(WO_3)$
    - Photocatalytic hydrogen production (Pt or Au)
- The composites used in photocatalysis
  - Semiconductors (TiO<sub>2</sub>, WO<sub>3</sub>, SnO<sub>2</sub>, CdS, etc.)
  - Noble metals (Au, Pt, etc.)
  - High adsorption capacity materials (clay minerals, carbon nanotubes, etc.)











### **Experimental set-up for the degradation experiments**

# **Testing conditions:**

*Run time*: 180 minutes *Irradiation*: UV (λ ≈ 365 nm) *Degraded organic compound*: 0.5 mM phenol *Purging gas*: air *Catalyst "concentration"*: 1.0 g/L







## **Degradation pathway of phenol**



#### Phenol

- Important base chemical for several commercial products
- Significant industrial pollutant in wastewaters and natural pollutant of thermal waters

#### Removal

- Via photocatalysis
  - Efficient
  - Cheap
  - Energy-friendly
  - Degradation intermediates (ECR) 1272/2008 [EU-GHS/CLP])



### **Results – degradation of phenol**





#### **Results – degradation intermediates accumulated**





#### **Results – X-ray Diffraction**



Biblioteca Academiei Române, București

#### **Results – Raman spectroscopy**



TiO<sub>2</sub>

Crystal phase composition: confirms the presence of anatase and rutile

WO<sub>3</sub>

- Crystal phase composition: confirms the presence of crystalline WO<sub>3</sub>
- Indicates the presence of anchored amorphous islands 0 0 н Η 0 0 O H. Ti Ti Ti Ti 0 Ti Bulk TiO<sub>2</sub> Η Ti







Biblioteca Academiei Române, București

#### **Results – X-ray photoelectron spectroscopy/ 13C-NMR**





## **Results – Summary**





### **Other related activities**



5 Papers already submitted to: Applied Catalysis B, Advanced Materials, Catalysis Today





**Baia Lucian** Cegléd Zsuzsanna Coșoveanu Veronica **Danciu Virginia Dombi András** 

> Hernádi Klára Karácsonyi Éva **Kovács Gábor** Mogyorósi Károly

Oszkó Albert Pap Zsolt **Pop Lucian-Cristian** Popescu Ionel-Cătălin Vulpoi Adriana

## Thank you for your attention





Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra



