Nanoscale diodes without p-n junctions. Mircea Dragoman IMT –Bucharest

Carbon-based materials

K.S. Novoselov et al., Science 306 (2004) 666 Theory: P.R. Wallace, Phys. Rev. 71 (1947) 622

H.W. Kroto et al., Nature 318 (1985) 162

S. Iijima, Nature 354 (1991) 56

Graphene: Should it exist?

Why the current is flowing in graphene?

Band structure

Simulation done at 100 GHz

The report between the intensities of 2D and G peaks is around 2 telling us that we have a single layer graphene. The 2D and G Raman peaks positions are 2640 cm⁻¹ and 1586cm⁻¹, respectively

A CLOSER LOOK VIA SEM

$$I = I_0[\exp(V/V_0) - 1]$$
 (1)

 I_0 and V_0 have the values 3.65 mA and 4.68 V for the positive polarization and -2.6 mA and -3.12 V for the negative polarization regime, respectively. Slightly asymmetric characteristics are typical in graphene devices and are due to graphene-substrate (in our case to graphene-CPW as well) interactions.

Choosing a operating point I_{av} and V_{av} and developing (1) in a Taylor series, around an operating point it results the demodulating term arround (I_{av}, V_{av}) :

$$\Delta I = I - I_{av} = I_0 \frac{V_{RF}^2}{4V_0^2} \exp(V_{av} / V_0) \quad (2)$$

 $V_{\rm RF}$ -the value of the RF signal

GRAPHENE RADIO

The detected DC voltage as a function of frequency for various DC currents: 1 mA (thin gray line), 2 mA (black line), 3 mA (thick gray line).

Demodulated signal in time 1 kHz

Schottky metals for graphene

Metal	Work function (eV)
Al	-4.27 eV (the best)
Cr	-4.5 eV
Ti	-43 3 eV

Graphene work function -4.5 eV **Ohmic metals for graphene**

Metal	Work function (eV)
Pd	-5. 12 eV
Pt	-5.6 eV

APPLIED PHYSICS LETTERS 97, 163101 (2010)

Modified, semiconducting graphene in contact with a metal: Characterization of the Schottky diode

Amirhasan Nourbakhsh, 1,2,a) Mirco Canto	oro, ^{1,3} Afshin Hadipour, ¹ Tom Vosch, ⁴
Marleen H. van der Veen, ¹ Marc M. Hey	ns, ^{1,5} Bert F. Sels, ² and Stefan De Gendt ^{1,1}
¹ IMEC, Kapeldreef 75, B-3001 Leuven, Belgium	
² Dept. of Microbial and Molecular Systems,	wen, Kasteelpark Arenberg 23,
B-3001 Leuven, Belgium	
³ Dept. of Physics and Astronomy, K. U. Leu	tijnenlaan 200d, B-3001 Leuven, Belgium
⁴ Dept. of Chemistry, K. U. Leuven, Celestijn	0f, B-3001 Leuven, Belgium
⁵ Dept. of Metallurgy and Materials Enginee	 Leuven, Kasteelpark Arenberg 44,
B-3001 Leuven, Belgium	

Our results-currents at mA level!

-4

1500

-2

0

2

4

100

-100

-200

10

A GRAPHENE PHASE SHIFTER

BALLISTIC GEOMETRIC GRAPHENE DIODE $d_{in} > d_{out}$ х D_{out}=100nm D_{in}=20 nm L=200nm d_{in} d_{out} rectification $d_{i} = d_{in} - (d_{in} - d_{out})j/(N+1)$ $V_j = -jeV/(N+1)$ Potential energy metallic $k_{n,j} = \operatorname{sgn}(E - V_j) \sqrt{(E - V_j)^2 / (\hbar^2 v_F^2) - (n\pi / d_j)^2}$ contact $T = \sum_{n=1}^{N_{out}} |A_{n,out}|^2 / \sum_{n=1}^{N_{in}} |A_{n,in}|^2$ metallic We compute: contact $A_{n,i}$ *j* = *in*, *out* are calculated by imposing the continuity conditions at each interface for the spinorial solutions of the Dirac equation in region *j*. $\Psi_{j}(x, y) = \begin{pmatrix} \sum_{n=1}^{N_{j}} [A_{n,j} \exp(ik_{n,j}x) + B_{n,j} \exp(-ik_{n,j}x)] \sin(2n\pi y/d_{j}) \\ \sum_{n=1}^{n=1} [A_{n,j} \exp(ik_{n,j}x) - B_{n,j} \exp(-ik_{n,j}x)] \sin(2n\pi y/d_{j}) \end{pmatrix}$

Number of modes

The results are independent on the number of discretization regions *N*. Although there are a finite number of outgoing modes for both voltage polarizations, in all cases there is a voltage range in which no charge carriers are transmitted since for these *V* values the number of outgoing modes, and hence the current, vanishes. This region, with a width given by $\pi \hbar v_F / d_{out}$

 E_{F} = 0 (blue dashed line), 0.1 eV (solid black line) and 0.2 eV (red dotted line).

03/08/2013 16:01:05 **KEITHLEY** Diode Forward I-V Sweep 6.0E-04 5.0E-04 4.0E-04 3.0E-04 2.0E-0 1.0E-04 0.0E+00 -1.0E-04 -2.0E-04 60 mV -3.0E-04 -4.0E-04 -5.0E-04 -6.0E-04 -2.0E+00 -1.0E+00 -4.0E+00 -3.0E+00 0.0E+00 2.0E+00 00+30. Anode Voltage (V) 4(Legend -4V 4V Blank (meV) 100 20 50 E_{g} (meV) C=3 aF $\frac{30}{\theta}$ (degree) 90 k_b T=27 meV at 10 **P**1 R=10K Ω \triangle P2 room ∇ P3 temperature 0 P4 τ = 30fs fc=6 THz D1 ★ ٠ D2 E_g=60 meV 1 30 60 90 0 Phys. Rev. Lett. 98, 206805 (2007) **Energy Band-Gap Engineering of Graphene Nanoribbon** W(nm)A 12-a ediție a Seminarului Național de Nanoștiință și Nanotehnologie,

Biblioteca Academiei Române, București

ACKNODLEGEMENTS

I would like to thank to many scientists which helped me in the quest in the area of carbon nanoelectronics, most of them being co-authors of many papers published in the last period of time. **My wife Daniela** has helped me with her deep knowledge in the area of quantum mechanics ,solid state physics and graphene physics . **My colleagues from IMT Bucharest (Alex Muller, Dan Neculoiu, Adrian Dinescu, Alina Cismaru, Antonio Radoi,), dr. George Konstantinidis** from **FORTH Heraklion, dr. George Deligeorgis** from **LAAS Toulouse** were behind almost any device reported in this talk especially due to their invaluable knowledge in the area of semiconductor technology. I am grateful **Prof. Hans Hartnagel** who during many years has helped and guided me in the area of microwaves and nanoelectronics.

This work was supported by a grant of Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0071, and the the European Commission for the financial support via the FP 7 NANO RF (grant agreement 318352

