

Oxides nanotubes and their applications

Maria Zaharescu

Ilie Murgulescu Institute of Physical Chemsitry of the Romanian Academy, Bucharest, Romania

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

Introduction

- Carbon nanotubes (CNT) were discovered in 1991
- Since then, the interest for inorganic nanotubes increased intensively and nanotubes of numerous inorganic compounds were synthezised:
 - layer d-metal dichalcogenides MX₂ (M = Mo, W; Ta; X= S, Se)
 - other type of chalcogenides: InS, ZnS, Bi₂S₃, TiS₂, TiSe₂, CdS, CdSe, Ag₂S,
 - boron nitride (BN), carbide (BC_x) and carbonitride ($B_xC_yN_z$)
 - semiconducting materials, such as: SiGe, InGe/GaAs, InGaAs/GaAs, SiGe/Si, InGeAs/GaAs
 - nanotubes of metals: Co, Sb, Se, Bi,
 - p-, d-, f-metal (Al, Si, Ge, Ti, Zn, Nb, Ta, Zr, V, Mo, Dy, Tb) oxides

Introduction

- Graphene was descovered in 2004
- In 2011 inorganic monoatomic layers are reported:
 - BN, MoS2' Mg3B2, WSe2
 - $Bi_2Sr_2Ca_{n-1}Cu_nO_{2n+4+x}$

Introductionn

Potential application of oxide nanotubes:

- catalysis
- biochemistry
- separation science and nanotechnology
- sensors
- solar cells
- immobilization and stabilization of biologically active compounds like enzymes, antibodies, microorganisms and drugs

Evolution of TiO₂ nanotubes preparation methods

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

D. V. Bavykin, Frank C. Walsh, Elongated Titanate Nanostructures and Their Applications, Eur. J. Inorg. Chem. 2009, 977–997

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

PRECURSORS:

- TiO₂ P25 Aeroxide Degussa (D),
- Anatase Aldrich (A) and
- Amorphous and sol-gel TiO₂ powder (SGA)
- Nano-crystalline sol-gel TiO₂ powder (SG)

EXPERIMENTAL CONDITIONS:

1. Hydrothermal treatment at 140°C for various times (from 26-96 hours) in the presence of 10 M NaOH solution

Sol-gel TiO₂ dried powder

Sol-gel TiO₂ thermally treated powder at 400°C

(in c) relieve

Commercial TiO₂ P25 Aeroxide

Commercial TiO₂ Aldrich

TEM and SAED images of the precursors

XRD patterns of the precursors

TEM images of the synthesized nanotubes

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

Natrium content of the synthetised nanotubes

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

The titanate based nanotubes obtained from the both precursors present a similar phase composition of Na₂Ti₂O₄(OH)₂

Thermal behaviour

D. V. Bavykin, Frank C. Walsh, Elongated Titanate Nanostructures and Their Applications, Eur. J. Inorg. Chem. 2009, 977-997

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

Thermal stability of the synthetised nanotubes

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

Structural evolution of synthesized nanotubes by thermal treatment

Possible mechanism of nanotubes formation

- The formation mechanism takes places in three stages during hydrothermal treatment:
- 1. The 3D structure of the precursors (crystalline or amorphous) transforms under alkaline attack in 2D lamellae structure
- 2. The boundaries of the lamellae (nanosheets) have free bonds and the free energy
- 3. The tube structure, 1D, is forming by rolling the nanosheets and saturation of the free bonds from the nanosheets boundary

The modeling of the nanotube formation from nanopowders is under evaluation

TiO₂ based nanotubes - conclusions

- ID tubular nanosized structures were obtained by hydrothermal treatment under alkali attack
- The degree of crystallinity of the precursors influences the formation and the morphology of the nanotubes
- The amorphous sol-gel precursor is much efficient as precursor than crystalline P25 Aeroxide because it skips the dissolution stage of the crystalline phase and it has high reactivity
- The best nanotube ratio has been obtained for 72 hours hydrothermal treatment when starting from P25 Aeroxide Degussa and for 24 hours when started with sol-gel powder
- > The structure and chemical composition of the nanotubes could be assigned to $Na_xH_{2-x}Ti_3O_7 \cdot nH_2O$ based on EDAX and XRD analysis
- > The presence of the sodium enhanced the thermal stability of the nanotubes

Previous preparation methods:

- Th.Nemetscheck and U.Hofmann (1954): high temperature SiO
 - disproportionation reaction
 - reaction of silica and silicon metal in high vacuum at 1200°C

Sol-gel preparation methods:

- H.Nakamura, Y. Matsui (1995): DL-tartaric acid
- A.R.Lim et at (1999): DL-tartaric acid
- E.M. Mokoena et al (2003): DL-tartaric acid
- Q. Ji et all. (2004): peptidic lipids template method
- C.H. Ruescher et all. (2007): metal salts template method
- C.Anastasescu et al. (2009): DL-tartaric acid

SiO₂ hollow tubes preparation

[TEOS: *DL*-tartaric acid: EtOH]: NH4OH = [1:0.04:25]:16

- Aging 1(T), 2 hrs(1T) and drying: 100°C, 5 hs
- Thermal treatment: 1 h, 400°C, heating rate 10//min (2T)
- *Meso-tartaric* acid used as tempating agent (S)

Sample SiO₂-2T (dried 1000C)

Sample SiO₂-2T (dried 100°C, TT 450°C) **TEM images of samples with different thermal treatment**

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

SiO₂ tubes cross sections

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

Meso-tartaric acid as templating agent

C. Anastasescu, M. Anastasescu, V.S. Teodorescu, M. Gartner, M.Zaharescu, J. Non-Cryst. Solids, 356 (2010)

2634-2640

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

XDR patterns of the SiO₂ tubes and spheres

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

DTA/TGA curves of the SiO₂ tubes and spheres

SiO₂ microtubes - conclusions

- SiO₂ spheres and hollow tubes were prepared by sol-gel method in the presence of DL-tartaric or *meso*-tartaric acid used as templating agent
- \succ SiO₂ tubes could be obtained only in the presence of DL-tartaric acid
- The spheres obtained in the presence of meso-tartaric acid have identical structure but different morphology as compared to the hollow tubes
- Due to their specific morphology, specific properties of the SiO₂ tubes are expected the SiO₂ tubes present the SiO₂ tubes present

Photocatalytic activity of TiO₂ and SiO₂ tubes and spheres

 TiO_2 and SiO_2 tubes and spheres were used for photocatalytic testing for the oxidation of oxalic acid to CO_2 in liquid phase at 20°C

• as prepared and

• platinum impregnated with H_2PtCl_6 to a final loading of 1%.

Comparative Photocatalytic activity of the TiO₂ and SiO₂ tubes and spheres

Photocatalytic oxidation of oxalic acid (silica hollow tubes and spheres were Pt-doped)

SiO₂ materials for the oxidation of oxalic acid to CO₂ in liquid phase at 20°C

C. Anastasescu, M. Zaharescu, I. Balint, Catal Lett., 132, 81-86 (2009)

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

- A. The diffuse reflectance spectra of SiO₂-NT (thick line) and SiO₂-S
- B. The plot of the transformed diffuse reflectance spectra used to determine the band gap energy

The values of the band gap energies derived form the UV-Vis plots were: 2.7 eV for SiO_2 -T and 5.1 ev for SiO_2 -S

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

The biological activity of the SiO₂ nanotubes was studied on the following microorganisms:

- *Escherichia coli (M1)* (isolated from effluent of wastewater treatment plant)
- *Virgibacillus halodenitrificans (M2)* and *Bacillus subtillis (M3)* (isolated from the surface of subterranean rock salt)
- Bacilus sphericus (M4) (DSMZ 369)

Total c.f.u. number quantified after 24 hours in the presence of SiO₂ nanotubes

Acknowledgement

Dr. Mariuca Gartner Dr. V.S.Teodorescu – IFTM Dr. M.Enache – IBB Dr. Simona Merciu - IBB Dr. Mihai Anastasescu Ph.D student Crina Anastasescu Ph.D student Silviu Preda Ph.D student Cristian Andronescu Ph.D student Adriana Rusu

The financial support of the PNII Romanian National Research Program, contract 71-109/2005, is acknowledged