

Electromagnetic field propagation in graphene in the range 40 MHz-110 GHz

 Mircea Dragoman¹*, George Konstantinidis², George Deligeorgis^{2,5}, Dan Neculoiu³,A.A.Muller¹ Alina Cismaru¹,Daniela Dragoman⁴, Robert Plana⁵
¹ National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest, Romania.
² Foundation for Research & Technology Hellas (FORTH), P.O. BOX 1527, Vassilika Vouton, Heraklion 71110, Crete, Hellas
³ Politehnica University of Bucharest, Electronics Dept., 1-3 Iuliu Maniu Av., 061071 Bucharest, Romania.
⁴ Univ. Bucharest, Physics Faculty P.O. Box MG-11, 077125 Bucharest, Romania
⁵ LAAS CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse Cedex 4, France

In analogy to the famous Moore law, the Edholm law states that "*the need for higher bandwidth in wireless communications doubles every 18 months*". In modern wireless LANs the carrier frequency is 5 GHz and the corresponding data rate does not exceed 110-200 Mb/s. However, following the ever increasing demand for wireless communication, the data rate is expected to reach 5Gb/s in 8-10 years. In order to accommodate such an increase, the carrier frequency for wireless communications should reach and possibly exceed 100 GHz, thus approaching the terahertz domain. In that frequency range, there is a severe lack of enabling devices

Parameter	Value and units	Observations
Thermal conductivity	5000 W/mK	Better thermal conductivity than in most crystals
Young modulus	1.5 TPa	Ten times greater than in steel
Mobility	40 000 cm ² V ⁻¹ s ⁻¹	At room temperature (intrinsic mobility) maximum mobility : 200 000 cm ² V ⁻¹ s ⁻¹) on suspended graphene or graphene on hexagonal BN substrate
Mean free path (ballistic transport)	≈400 nm	At room temperature, but exceeds 1 µm in graphene on hexagonal BN substrate at room temeperature
Electron effective mass	0	At room temperature
Hole effective mass	0	At room temperature
Fermi velocity	c/300=1000000 m/s	At room temperature

Conclusions –What's next?

The photocurrent is maximum if, as in (a) the Fermi energy level in graphene, measured with respect to the Dirac point, is $E_F = hv/2$. Then, vertical transitions generate an electron pulse with an energy distribution centered around E_F , which is directed by an applied bias towards two oblique gates with different widths, and, and polarized with different biases, and ; an output pulse is finally collected THz generation using an RTD-like graphene device

The electrons produced by a short laser pulse incident on a graphene monolayer excite two oblique gates polarized with different dc voltages. The two gates are biased such that the quantum transmission has an isolated sharp peak in a narrow energy bandwidth. Such a transmission mimics the main property of a resonant tunneling structure, usually of consisting semiconductor a heterostructure, and generates an electric pulse with sub-picosecond duration and a spectrum with a cutoff frequency that can exceed 10 THz.

J. Appl. Phys.- accepted for publication, 2011

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

18 mai 2011, Biblioteca Academiei Romane