

MICROPARTICLES SYNTHESIZED BY HIGH PRESSURE SPRAYING METHOD AND THEIR ADSORPTION PROPERTIES FOR PHENOL DERIVATIVES

<u>Sandu Peretz¹</u>, Dan F. Anghel¹, Manuela Florea-Spiroiu², Daniela Bala², Cristina Stoian³ and Gheorghe Zgherea³

- ¹ Institute of Physical Chemistry "I. Murgulescu", Department of Colloids, 202 Spl. Independentei, 060021, Bucharest, Romania, e-mail: peretz@icf.ro
- ² University of Bucharest, Department of Physical Chemistry, 4-12 Regina Elisabeta Blvd., 030018, Bucharest, Romania
- ³ University "Dunărea de Jos" of Galați, Department of Chemistry, 111 Domnească Street, 800201, Galați, Romania

OBJECTIVES

- To study the interaction between cationic chitosan and an anionic surfactant sodium bis-(2-ethyl hexyl) sulfosuccinate (AOT).
- To synthesize chitosan based microparticles at atmospheric pressure and by high pressure method.
- To prove the chitosan/AOT complex formation by Fourier Transform Infrared (FTIR) Spectroscopy, and to characterize the size and shape of micropaticles by optical and SEM microscopy.
- To investigate the behaviour of lyophilized microparticles in contact with phenol derivatives.
- To study the influence of medium pH and the amount of microparticles on the phenol adsorption efficiency.
- To monitor the time evolution of phenol derivatives sorption by microparticles.

EXPERIMENTAL

Methods

- Fourier Transform Infrared (FTIR) Spectroscopy Nicolet iN10 FT-IR Microscope – Thermo Scientific
- UV-Vis spectroscopy Cary 100 Bio VARIAN
- Optical Microscopy Magnum T Microscope
- Scanning Electron Microscopy (SEM) using a Zeiss EVO LS10 Apparatus
- Freeze drying ALPHA 1-2 LD

Materials

- Chitosan medium molecular weight (Mw = 120±70 kDa) Aldrich
- Sodium bis (2-ethyl hexyl) sulfosuccinate (AOT) 98% Sigma
- Carbon dioxide with 99.9% Linde Gas Romania

MICROPARTICLES PREPARARED AT ATMOSFERIC PRESSURE

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

18 mai 2011, Biblioteca Academiei Romane

MICROPARTICLES PREPARARED AT ATMOSFERIC PRESSURE

Domains of phase diagram

- 1) HOMGENEOUS SOLUTIONS, monophasic and transparent within domain C;
- 2) PRECIPITATES, preceded by the apparence of an advanced turbidity within domain PP;
- **3) GEL-TYPE MEMBRANES:**
 - domain MEC (microcapsule that expels its content Fig. 2b);
 - domain MP (microparticles Fig.2a);
 - domain DM (shrinked microcapsule Fig.2c).

MICROPARTICLES PREPARARED AT ATMOSFERIC PRESSURE

Domains of solubility for Chitosan-AOT complex-gel

Protonated with 1% wt acetic acid

Protonated with 2.5% wt acetic acid

Microcapsule

GEL-TYPE MEMBRANES

Microcapsule that expels its content

Shrinked microcapsule

Bar = 1000 μm

MICROPARTICLES PREPARED BY HIGH PRESSURE SPRAYING METHOD

Experimental apparatus

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

18 mai 2011, Biblioteca Academiei Romane

POLYMER-SURFACTANT COMPLEX PREPARED AT HIGH PRESSURE

Optical microscopy

Microparticles

Wires

 $bar = 500 \ \mu m$

CHITOSAN-AOT WET MICROSPHERES

SEM micrographs

Microparticle

Surface of microparticle

SEM micrographs

Microparticle

Surface of microparticle

INTERACTION BETWEEN CHITOSAN-AOT

FTIR measurements

The specific values for Chi/AOT complex

Chitosan v (cm ⁻¹)	AOT v (cm ⁻¹)	Microparticles Chi/AOT v (cm ⁻¹)	Assignment
1642		1634	νΝΗ, δΝΗ2
1586		1522	δΝΗ2
	1212	1204	vSO
	1093	1082	v80

Interaction between lyophilized microparticles with phenol and o-cresol

FTIR measurements

Specific values for interaction phenol, o-cresol

Chi/AOT- o-Cresol v (cm ⁻¹)	Chi/AOT- Phenol v (cm ⁻¹)	Microparticle Chi/AOT v (cm ⁻¹)	Assignment
3395.02	3396.44	3413.92	Bonded OH; position and shape depend on degree of association; CH aromatic streching.
2873.43	2873.52	2860.65	H bond; intramolecular with C=O; chelatic OH.
1635.96	1635.96	1634.69	C-C aromatic streching.
1532.96	1533.48	1522.56	δNH; CH aromatic streching.

Effect of pH on contaminant removal

Effect of sorbent dose

Kinetics of pollutant adsorption

CONCLUSIONS

- Two methods to obtain ultrafine particles by the interaction between chitosan and an anionic surfactant, sodium bis (2-ethyl hexyl) sulfosuccinate (AOT), were developed.
- Chitosan-surfactant complex synthesized at atmospheric pressure may take the form of stable microparticles at optimal concentrations of the reactants.
- An experimental apparatus equipped with a high pressure cell for spraying the polymer into the anionic surfactant solution produces either ultrafine particles or wires depending on the spraining pressure.
- The interaction between chitosan and AOT is proved by FTIR, whereas SEM shows that the lyophilized chitosan/AOT microparticles present a higher roughness and porosity than the wet particles.
- Lyophilised chitosan/AOT microparticles have been successfully used in advanced treatment of wastewaters for the retention of phenol and o-cresol.
- The contaminant removal for phenol and o-cresol attain a maximum in the range of pH 7-8, increases with the amount of used particles and decreases with increasing of initial pollutant concentration.
- The adsorption of phenol and o-cresol occurs rapidly in the first 60-120 minutes followed by a slow process that takes about 520-600 minutes.

ACKNOWLEDGMENTS

The authors would like to acknowledge to EU (ERDF) and Romanian Government support that allowed for acquisition of the research infrastructure under POS-CCE O 2.2.1 project INFRANANOCHEM - Nr. 19/01.03.2009.

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

18 mai 2011, Biblioteca Academiei Romane