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The key concept of the space elevator 
appeared in 1895 when russian scientist 
Konstantin Tsiolkovsky was inspired by 
the Eiffel Tower in Paris to consider a 
tower that reached all the way into 
space, built from the ground up to an 
altitude of 35790 km above sea level.

After discovery of carbon nanotubes in the 1991, 
engineers realized that the high strength of these 
materials might make the concept of an orbital 
skyhook feasible, and plan for an elevator to turning 
the concept into a reality 

(see Science @ NASA, Audacious&Qutrageous:Space
Elevators, Sept. 2000 )
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Carbon nanotubes were

discovered in 1991 by the

japanese physicist. Iijima Sumio,

(born May 2, 1939). 

Besides their small size, the carbon nanotubes are half as 
dense as aluminum, have tensile strengths 100 times that of 
steel alloys, have current carrying capacities 1000 times that 
of copper, and transmit heat twice as well as pure diamond.

Iijima S 1991, Helical microtubules of graphitic carbon, 
Nature (London) 354, 56–58.
Iijima S 1993, Single-shell carbon nanotubes of 1-nm diameter,
Nature (London) 363, 603–605.
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Definition of roll-up 
vector r as linear 
combination of base 
vectors a and b
r = na+mb
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(see D.Srivastava, C. Wei: Nanomechanics of carbon nanotubes and composites, Appl Mech Rev vol
56, no 2, March 2003)
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In this paper we consider only the single-walled carbon 
nanotubes.

While multi-walled nanotubes are easier to produce and 
have similar tensile strengths, there is a concern that the 
interior tubes would not be sufficiently coupled to the 
outer tubes to help hold the tension. 

If the nanotubes are long enough, even weak Van der
Waals forces will be sufficient to keep them 
from slipping, and the full strength of individual 
nanotubes could be realized macroscopically 
by spinning them into a yarn. 
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Carbon nanotubes have lengths of tens to hundreds of 
microns, far short of any macroscopic requirement. 
The key is to get the carbon nanotubes into a 
composite : ropes of carbon nanotube composites

In polymeric composites, carbon nanotubes can reduce 
weight by a factor of 5-10, while increasing the strength 
by a factor of 5-10 compared to a conventional carbon 
fiber matrix , with ultra-strong individual 
fibers roughly 10 microns in diameter 
and lengths of many meters to kilometers, 
with uniform alignment of the 
nanotubes in the matrix, 
efficient stress transfer from the matrix 
to the nanotube, 
and attaining high nanotube loadings.



8B.C.Edwards, The space elevator NIAC Phase II,  Final report,  2005.
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In this paper, the rope is composed from 6 subropes, 
each subrope being  composed from 7 groups of 
single wall carbon nanotubes. Each group has 25 
carbon nanotubes with two different radii (zigzag and 
armchair 6.26A,  h = 0.617A and 16.33A, h = 0.998A),  
and the core group consists of 49 chiral carbon 
nanotube with the same radius (3.22A and h = 0.6A), 
into a polymeric matrix.
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The bending of this carbon nanotube rope is described
by a coupled continuum –atomistic  method.

The continuum method is setup in the light of Cosserat
elasticity, which admits degrees of freedom not present 
in classical elasticity: the rotation of points in the 
material, and a couple per unit area (couple stresses).

The atomistic method is used in the regions where the 
continuum method is no longer valid.
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The generic form of the coupling atomistic-continuum regions.
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The classical mechanics fail in describing the mechanical behavior
of the carbon nanotube ropes under deformation. The rope is 
modeled as an elastic chiral material (noncentrosymmetric
material) which  is isotropic with respect to coordinate rotations 
but not with respect to inversions.

So these materials have a qualitatively different behavior in 
comparison with isotropic solids.
Chiral effects cannot be expressed within classical elasticity since 
the modulus tensor, which is fourth rank, is unchanged under an 
inversion

4
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Constitutive equations for an isotropic centrosymmetric Cosserat solid 

(1)

(2)

is the stress tensor ,           is the couple stress tensor (moment per unit area),  

is the small strain tensor (macrostrain vector),  

is the displacement vector,                     the permutation symbol. 
the microrotation vector                   

the macrorotation vector

(2 ) ( )kl rr kl kl klm m me e rσ λ δ μ κ κε ϕ= + + + −

, , ,kl r r kl k l l km αϕ δ βϕ γϕ= + +

klσ klm

. ,
1 ( )
2kl k l l ke u u= +

u klmε
kϕ

,
1
2k klm m lr uε=kr

Lame elastic constants    
Cosserat rotation modulus 

Cosserat rotation gradient moduli

λ μ
κ

, ,α β γ
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1 , 2 , 3 ,

(2 ) ( )
,

kl rr kl kl klm m m

r r kl k l l k

e e r
C C C
σ λ δ μ κ κε ϕ
ϕ δ ϕ ϕ
= + + + − +

+ +

, , ,

1 2 3 3 2( ) ( ) ( ),
kl r r kl k l l k

rr kl kl klm m m

m
C e C C e C C r
αϕ δ βϕ γϕ

δ ε ϕ
= + + +

+ + + + − −

The constitutive equations for a anisotropic 
noncentrosymmetric Cosserat solid can be written in the 
form

1 2 3, ,C C C positive or negative chiral
elastic constants
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1 1

2 3

( sin sin cos cos cos )
(cos sin sin cos cos ) sin cos ,

d e
e e

= − ψ ϕ+ ψ ϕ θ +
+ ψ ϕ+ ψ ϕ θ − θ ϕ

2 1

2 3

( sin cos cos sin cos )
(cos cos sin sin cos ) sin sin ,

d e
e e

= − ψ ϕ− ψ ϕ θ +
+ ψ ϕ− ψ ϕ θ + θ ϕ

3 1 2 3sin cos sin sin cos .d e e e= θ ψ + θ ψ + θ

The Z-axis coincides with the central axis.

We take s to be the coordinate along the central line of the 
natural state. The orthonormal basis of the Lagrange 
coordinate system is denoted by
and the orthonormal basis of the Euler coordinate system by

. The basis  d is related to e by the Euler angles     
and           and . These angles determine the orientation of 
the Euler axes relative to the Lagrange axes

,θ ψ ϕ

1 2 3( , , )e e e

1 2 3( , , )d d d
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The motion of the rope is described by three vector 
functions

× ∋ →

→ ∈ 3
1 2

( , )
( , ), ( , ), ( , ) .

R R s t
r s t d s t d s t E

The material sections of the rod are identified by the 
coordinate  s. The position vector                can be 
interpreted as the image of the central axis in the Euler 
configuration.
The functions               ,                 can be interpreted as 
defining the orientation of the material section  s in the 
Euler configuration. The function 

represents the unit tangential vector along the rope. 

( , )r s t

1( , )d s t 2 ( , )d s t

= ×3 1 2( , ) ( , ) ( , )d s t d s t d s t
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1 sin sin cosu ′ ′= θ ϕ−ψ θ ϕ

2 cos sin sinu ′ ′= θ ϕ+ψ θ ϕ

3 cosu ′ ′= ϕ +ψ θ
These functions measure the bending and torsion of the rope. 
The first two represent the components of the curvature  of the 
central line k corresponding to the planes  yz and   xz.  

The last is the torsion   

2 2 2 2 2 2
1 2 sinu u ′ ′κ = + = θ + ψ θ

3 cosu ′ ′= τ = ϕ +ψ θ

ττττ
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Solution single-soliton. The                    wave 
propagates at a constant velocity without change of 
shape. The velocity depends on amplitude.

cosu = θ
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The general solution for                  can be written as a nonlinear 
superposition of single solitons.  Here is the superposition of 2 
single solitons propagating in same direction (solution 2-solitons).  
A larger soliton travels with a high velocity so that it overtakes the 
smaller one and after collision they reappear without changing 
their form identity.

cosu = θ
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The superposition of two single solitons propagating in opposite 
directions..
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Animation of Alex Kasman (2001) by gratitude of the author 
(by Monica Soare) the Rensselaer Polytechnic Institute, Computational 
Nanomechanics Lab., Troy, New York (2004) – representing the   
nonlinear superpositions of solitons.
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At the atomistic level, the total atomic energy        is 
obtained from classical potentials  

where        is the energy of the ith atom 

is  potential between i-th and j-th atoms of the 
neighbors, and is the interatomic distance.    Forces 
on each atom, in the absence of external forces, are

where the comma means differentiation with 

respect to  the atomic coordinates 

aE

=∑a
i

i
E E

≠

= ∑1 ( )
2i ij

j i
E V r

iE
( )ijV r

ijr

= − , i

a
i rf E

1 2, ,..., Nr r r



24

The van der Waals force between atom i and j can be 
expressed by the Lennard-Jones potential as

⎛ ⎞σ σ
= ε −⎜ ⎟⎜ ⎟

⎝ ⎠

12 6

12 6( ) 4ij
ij ij

V r
r r

194.7483 10 Nm−ε = ⋅

σ = 3.407

The term            describes repulsion and the term            describes 
attraction. 

The force function is the negative of the gradient of the above potential:

The atomic simulations for carbon nanotubes armchair, zigzag and chiral, were performed 
by the courtesy of Monica Soare at the Rensselaer Polytechnic Institute, Computational 
Nanomechanics Lab., Troy, New York (2004) and Calin Chiroiu at the Politecnico di
Torino, Structural Engineering dept. (2005) .

depth of the potential well

finite distance at which the 
interparticle potential is zero

121
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

61
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

d ˆ( ) ( ) ( )
d

= −∇ = −F r V r V r r
r
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The comparisons of nonlinear chiral theory, the atomistic 
simulations and experimental results 

Bethune DS, Kiang CH, Devries MS, Gorman G, Savoy R, Vazquez J, and 
Beyers R  (1993), Cobalt-catalyzed growth of carbon nanotubes with single-
atomic-layerwalls, Nature (London) 363, 605–607. Saito R, Dresselhaus G, 
Dresselhaus MS (1998), Physical Properties of Carbon Nanotubes, Imperial 
College Press, London, 361, 201-234.

yields:

Neither the nonlinear theory, either the atomistic approach do 
not succeed to describe very well the realistic behavior of carbon 
nanotubes deformation at bending and torsion. The nonlinear 
theory gives closer results in comparison with the experimental 
results only for torsion. The atomistic theory gives closer 
results in comparison with the experimental results only for 
bending.
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In the case of bending, when the external bending 
moment increases, the axial compression in the tube 
increases too, and when the stress reaches a critical value, 
the tube will locally buckle. The nonlinear theory is valid up 
to the point of local buckling at ϑ = o25.58

The definition of the bending angle.
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The gray region is discretized into 1024 nodal positions. 

The pad region is used to relate the atomic numerical 
solutions to solitonic continuum solutions rewritten as a 
weighted superposition of exact solutions. 

We use the Sinclair’s analytical treatment of the continuum 
region of a weighted superposition of elementary soliton
solutions that allowed the boundary conditions to be 
modified during the energy minimization of the atomistic 
region. 
The parameters are determined by means of a genetic 
algorithm, from an objective function. 
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For                   , the coupled theory put into evidence a 
solitonic mechanism of deformation. The pattern of 
the deformation  resembles a mechanism similar to that 
of a macrotube, but in the nanotube case, this 
mechanism is described by  means of solitons. 

A portion of the rope flattens and forms a domain 
that rotate about a central hinge line. The remaining 
part of the rope remains circular although it flattens and 
decreases its curvature. 
Once the solitonic mechanism starts, the 
rope becomes a mechanical 
mechanism and the formulas in the 
continuum theory is no longer valid.

ϑ > o25.58
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The solitonic mechanism of deformation it is 
characterized by :  

1.The van der Waals force is the interaction between the 
opposite walls of the rope when they approach each 
other. This force depends on the distance between 
them. For large distances, the van der Waals force is 
attractive, but when the separation between the atoms 
is below the equilibrium distance of 3.42 Å, it becomes 
strongly repulsive. 

2. With the increase in the bending angle,
the the opposite walls get closer to each 
other, and at a certain stage, the distance 
between them reaches the equilibrium distance. 

ϑ
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3.  Upon additional bending, this distance remains 
unchanged because there are no extra loads applied on 
the walls to prevail over the repulsive van der Waals
forces. 

4. Upon complete unloading from angles below 109-110°
the rope completely elastically recovers. At a very large 
bending angle of 118-120°, atomic bonds break and the 
deformation becomes irreversible.

5. The bending modulus is estimated to be 1.6TPa.
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Bending nanotube zigzag (9,0) radius 6.26 A, 
thichness 0.617 A
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Single wall nanotube armchair (5,5) radius 6.26 A, 
thickness  0.677 A.
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Single wall nanotube chiral (10,5) radius 3.22 A, thickness 0.6 
A.
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Nanotube zigzag (9,0) r =16.33A, thichness 0.998A
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Nanotube armchair (5,5) radius 16.33A, h = 0.998A
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