Nanoscience and Nanotechnology at the National Institute of

Lucian Pintilie General Director of NIMP

National Institute of Materials Physics Atomistilor 105 bis, Magurele, Ilfov county, ROMANIA <u>http://www.infim.ro</u>; pintilie@infim.ro

Romanian Academy, 3 February

2010

Fig. 4. SEM images of a partially dissolved membrane in which an array of potassium hydrogen phthalate rods was grown.

Outlines

- Presentation and strategy
- •Resources
- •Funding and results
- •Some "success stories"
- Conclusions

NIMP Bucharest is devoted to **fundamental and applied research** in the fields of **solid state physics and materials research**.

Priority in the NIMP's strategy for 2006-2010:

- <u>Nanostructured</u> materials and <u>nano-composites</u>: synthesis, characterization and applications

Initiativa NANO (physical phenomena and the preparation-structure-properties relation in structures below 1 micron, preferably below 100 nm) -thin films, multilayers and super-lattices - nanostructured materials, nanocomposites, (even in bulk form at the beginning) - nanowires, nanorods, nanotubes, nanobelts, nanodots - quantum structures, clusters - 2D and 3D interfaces/surfaces - defect engineering

Laboratories 10. Multifunctional Materials and structures 20. Magnetism and Superconductivity 30. <u>Nanoscale</u> condensed matter physics 40. Optical processes in <u>nanostructured</u> materials 50. Atomic structures and defects in advanced materials

Resources

Human Resources

The institute has presently about 250 workers, including 177 scientific workers (15 PhD supervisors, 94 doctors, 40 PhD students)

Infrastructure:

About 5 millions EUR invested in research infrastructure, from projects and Core program (XRD powder and thin films; SEM; AFM+PFM; MBE; PLD; RFsputtering with in-situ structural and compositional analysis; VSM; RES; advanced XPS equipment; STM; SNOM; various characterization equipments for physical properties)

A POS-CCE project of about 10 millions EUR (2009-2011), exclusively for research infrastructure, which will provide:

- atomic HR-TEM with state of the art equipment for analysis (STEM, EELS, EDX, etc.)

- clean room with nanolithography facilities (E-beam, FEG-SEM-FIB)

- -LEEM+PEEM
- -multimode SPM
- -PPMS+SQUID

Complex cluster for surface physics: MBE, RHEED, STM, XPS, LEEM

SEM with Cathodoluminiscence

RF-sputtering with in-situ characterization techniques: Auger, ellipsometry

PLD with excimer laser

SNOM+AFM

Scanning near field fluorescence microspectrometer

AFM+PFM

Raman Microscope

Financing 2005-2009:

30 projects containing in the title a word based on NANO

CEEX 2005-11 projects with 13,950,000 lei

CEEX 2006-9 projects with 13,500,000 lei

PN II 2007-5 projects with 10,000,000 lei

PN II 2008-5 projects with 10,000,000 lei

TOTAL: **27,45 millions lei** (equivalent of about **7 millions EUR**)

International participation (Nano-related projects):

2 network of excellence (FP6-NMP); 1 large collaborative project (FP7-NMP); 4 COST actions; 8 bilateral cooperations; collaboration with over 30 universities and research institutes from all over the world.

TOTAL: about **<u>500,000 EUR</u>**

Scientific publications:

-An average of about 140 articles/year in ISI ranked journals

Web of Science-Romania-2005-2009 Key words related to nanoscience and nanotechnology

NATL INST MAT PHYS (154)

UNIV BUCHAREST (83) NATL INST LASERS PLASMA & RADIAT PHYS (68) UNIV POLITEHN BUCURESTI (68) ALEXANDRU IOAN CUZA UNIV (55)

Published Items in Each Year

Some "success stories"

Fabrication and structural study of sol-gel HfO₂ thin films Laser processing of nanostructured oxide thin films for transparent and conventional electronics PROLAF project PN2 nr 11061/2007

XTEM image (cross section) of a HfO₂ sol-gel thin film with 12nm thickness, obtained by dipcoating on Si[100] wafer substrate, using an etoxide precursor, densified and crystallized by conventional thermal treatment of 30 minutes at 500°C. The interfacial SiO₂ layer is about 3nm thick. References Teodorescu VS, Blanchin MG, *Microscopy and Microanalysis,* 15, (2009), 15-19

M-G. Blanchin, B.Canut, Y.Lambert, V.S.Teodorescu, A.Barau, M.Zaharescu, *Journal of Sol-Gel Science and Technology,* 47, (2008), 165-172

M.Zaharescu, V.S.Teodorescu, M.Gartner, M-G.Blanchin, A.Barau, M.Anastasescu, *Journal of Non-Crystalline Solids,* 354 (2008), 409-415

Laser processing of sol-gel transparent conducting oxide thin films: ATO, ITO, project CEEX nr:104/2003, Romanian- French collaboration INCDFM-Univ Lyon-DPM

TB – twin boundary ; GB – grain boundary

XTEM image of a ATO film irradiated with 10 laser pulses (193 nm) of 36 mJ/cm²

ayer B, In this area the film	
nanostructure is not modified,	
practically	is idendical with
nanostruct	ure of the nonirradiated
film.	

- Layer M, median area, some structural modifications are present, due to the crystallization proces induced by the heat diffusion in the film thickness
- Layer T , top surfaceis crystallized by the direct laser pulse heating showing in fact the absorption depth of the laser radiation, of

REFERENCES

V. S. Teodorescu, C. Ghica, C. S. Sandu , A. V. Maraloiu, M-G. Blanchin, B. Canut, J. A. Roger, **Digest Journal of Nanomaterials and Biostructures**, 1, (2006), 61 - 69

CS Sandu, VS Teodorescu, C Ghica, B Canut, MG Blanchin, JA Roger, A Brioude, T Bret, P Hoffmann, C Garapon , **Applied Surface Science**, 208, 382-387, 2003

CS Sandu, VS Teodorescu, C Ghica, P Hoffmann, T Bret, A Brioude, MG Blanchin, JA Roger, B Canut, M Croitoru , **Journal of Sol-Gel Science and Technology**, 28, 227-234, 2003

STRUCTURAL INVESTIGATIONS OF Ge NANODOTS EMBEDDED IN SiO₂ Project No. 471/2009 (ID 918/2008), Ideas Program

Applications

- · LEDs based on quantum confinement effects
- Photovoltaic cells (the 4-th generation) based on quantum confinement effects
- Non-volatile memories (due to strong memory effect)
- Single Electron Devices
- Integrated opto-couplers in microsystems for biotechnology

Output:

- I. Stavarache, A.-M. Lepadatu, N. G. Gheorghe, M. A. Husanu, G. Stan, D. Marcov, A. Slav, G. Iordache, T. F. Stoica, V. Iancu, V. S. Teodorescu, C. M. Teodorescu, and M. L Ciurea, STRUCTURAL INVESTIGATIONS OF Ge NANODOTS EMBEDDED IN SiO₂, *J. Nanopart. Res.* (submitted)
- I. Stavarache, A.-M. Lepadatu, T. F. Stoica, G. Stan, D. Marcov, A. Slav, V. S. Teodorescu, C. M. Teodorescu, A. M. Vlaicu,
 I. Pasuk, S. Lazanu, G. Iordache and M. L. Ciurea, STRUCTURAL INVESTIGATIONS OF Ge DOTS EMBEDDED IN SiO₂,
 ROMANIAN CONFERENCE ON ADVANCED MATERIALS: ROCAM 2009

Work team:

Drd. I. Stavarache, Drd. A.-M. Lepadatu, Drd. A. Slav, N. G. Gheorghe, Drd. M. A. Husanu, Drd. G. Stan, Drd. D. Marcov, Dr. G. Iordache, Dr. T. F. Stoica, Dr. V. S. Teodorescu, Dr. C. M. Teodorescu, and Dr. M. L. Ciurea

Sol-gel films

XTEM image: 10 nm clear SiO_2 layer at Si interface, followed by Ge rich region and $Si(3\%Ge)O_2$

XTEM image: globular amorphous Ge nanodots in $Si(12\%Ge)O_2$

XPS image: Si 2p-2s and Ge 3p-3s region; surface Ge oxidized

Sol-gel films: amorphous Ge nanodots in amorphous SiO₂ matrix.

* *Left up*: the clear SiO_2 band is formed by the oxidation of the Si wafer during the annealing.

✤ *Left down*: the mean size of nanodots increases from 3.8 nm (3% Ge) to 4.3 nm (12% Ge).

* *Right up*: the film surface is formed by a mixture of GeO_2 and SiO_2 .

Magnetron sputtered films Si(40%Ge)O₂

TEM image: Ge nanodots; arrow: 50 nm nanodot

SAED pattern: tetragonal phase for Ge nanodots

HRTEM image: (a) lattice fringes contrast for Ge **tetragonal phase**; (b) amorphous network nanostructure

Magnetron sputtered films: mixture of **tetragonal Ge nanodots** (specific for **high pressure**) and amorphous ones in amorphous SiO₂ matrix.

★ *Left up*: mean size of nanodots is 20 nm.

✤ Left down: main diffraction data originate from crystalline nanodots larger than 50 nm.

Right up: (a) lattice interfringe 0.45 nm, specific to tetragonal Ge phase; (b) amorphous network consists of a mixture of Ge and Si oxides.

Smart –cut process:

Quantitative HRTEM: atomic scale measurement of strain field around extended defects

References

1. C. Ghica, L. C. Nistor, H. Bender, O. Richard, G. Van Tendeloo, A. Ulyashin, *Philosophical Magazine* **86**, 5137-5151 (2006).

2. C. Ghica, L. C. Nistor, H. Bender, O. Richard, G. Van Tendeloo, A. Ulyashin, *Journal of Physics D: Applied Physics* **40**, 395-400 (2007).

3. C. Ghica, L. C. Nistor, M. Stefan, D. Ghica, B. Mironov, S. Vizireanu, A. Moldovan, M. Dinescu

Applied Physics A DOI 10.1007/s00339-009-5527-1

4. **C. Ghica**, Qualitative and quantitative HRTEM characterization of extended defects induced in silicon by H-plasma treatment Invited lecture at 2nd Croatian Microscopy Congress with International Participation, Topusko, Croatia, May 18-21, 2006.

The schematics of the "Smart cut" process used to produce SOI devices:

HR image of a {111} defect induced in Si by H-plasma treatment.

HR pattern of the defect is highly dependent on the recording conditions (thickness, defocus) and position along the defect.

• Frequent common feature: ...ABCAABC...-like stacking sequence.

Micro-lenses for optoelectronic circuits

Schematic representation of the apparatus used to produce chalcogenide micro-lenses

2

3

5

"Procedeu si Aparat pentru Producerea de Microlentile Calcogenice". Documentul a fost înregistrat la OSIM sub nr. A00243 / 07.04.2006.
Brevet acordat de OSIM (Nr. Hotarare de acordare 6 / 146 / 30.11.2009).

Autori:

M. Popescu, F. Sava, A. Lorinczi / **INCDFM** S. Micloş, D. Savastru, M. Mustața, R. Savastru / **INOE-**2000

Photograph of a micro-lense

Patent:

Laser collimator

Nanostructured materials based on carbon nanotubes (CNT)1999-2010

Research directions

Synthesis of luminescent, cubic ZnS:Mn nanocrystals.

- Luminescent ZnS cubic nanocrystals, doped with Mn²⁺ions, were prepared by wet synthesis in the presence of a non-toxic surfactant.
- Self assembling results in a mesoporous structure, with a high crystallinity and narrow size distribution centered on d_m= 2nm.

L. C. Nistor, C. D. Mateescu, R. Birjega and S. V. Nistor, Appl. Phys. A 92, 295 (2008) S. V. Nistor, L. C. Nistor, M. Stefan et al., Superlattices & Microstructures 46, 306 (2009)

EPR spectra (multi-frequency) (= indicate: substitutional Mn²⁺ ions, (Mn(I) center) + surface centers Mn(II) si Mn (III).

- Mn²⁺ ions are substitutions in Zn²⁺ nods next to extended defects as twins (T) or stacking faults (SF).

HRTEM images = Showing the presence of defects.

S. V. Nistor, M. Stefan, L. C. Nistor, E. Goovaerts and G. Van Tendeloo, Physical Review B 81 (3) 035336 (2010)

Multi-segment nanowires based photodetectors

Template method

Nanoporous membranes+electrochemical deposition

⇒nanowire photodetectors (photoconductors,
 photodiodes) of up to 80 nm diameter
 ⇒single bath deposition-easy to transfer to industry

of CdTe nanowires prepared by template replication Enculescu I, Sima M, Enculescu M, et al. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS 244(5),1607-1611 (2007)

Deposition and properties

TEM images of undoped TiO₂ (a), Eu-doped TiO₂ (b) and Fe- and Eu-doped TiO₂ (c).

Phenol conversion degree CPh (%) after 5 h of UV illumination (λ = 312 nm) for the hydrotermally synthesized TiO₂ samples; 2M and 0.2 M are the initial Phenol concentrations.

Phenol conversion degree CPh (%) under visible irradiation (λ > 380 nm) catalysed by Fe and Eu doped and codoped TiO₂.

STRUCTURAL AND PHOTOCATALYTIC PROPERTIES OF IRON AND EUROPIUM DOPED TiO₂
 NANOPARTICLES OBTAINED UNDER HYDROTHERMAL CONDITIONS
 L. Diamandescu, F. Vasiliu, D. Tarabasanu-Mihaila, M. Feder, A. M. Vlaicu, C.M. Teodorescu,
 D. Macovei, I. Enculescu, V. Parvulescu, E. Vasile (Mat. Chem. Phys.112, 146–153 (2008)).

Temperature induced change in the hysteretic behavior of the capacitancevoltage characteristics of Pt–ZnO– Pb,,Zr0.2Ti0.8...O3–Pt heterostructures, L. Pintilie, *C. Dragoi, R. Radu, A. Costinoaia, V. Stancu*, and I. Pintilie, APPLIED PHYSICS LETTERS 96, 012903 (2010)

Metallic micro and nanotubes

Signal A = SE2 Date :6 Feb 2004 Photo No. = 6619 Time :14:42

Auto-catalytic deposition using the template method

20 µm

Acc.V Spot Magn Det WD 20.0 kV 4.0 964x SE 9.6 nickel tubes

 Mg = 1.95 KX
 10µm
 EHT = 5.00 KV WD = 14 mm
 Signal A = SE2 Photo No. = 5763
 Dr

Copper tubes prepared by electroless deposition in ion track templates B. Bercu, <u>I. Enculescu</u>, R.Spohr **Nuclear Instruments and Methods in Physics B**, Vol 225/4 497-502 (2004)

Magnetic field detectors based on giant magnetoresistence of multi-segment nanowires

Current perpendicular to plane singlenanowire GMR sensor I. Enculescu, M. E. Toimil-Molares, C. Zet, M. Daub,L. Westerberg ,R. Neumann, R. Spohr APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING 86 (1): 43-47 (2007) Examples of magnetic nano objects that are of our interest:

- •Thin films/multilayers
- exchange coupled bilayers
- (exchange bias, spring-magnets)
- **spin valves** as multilayers and as nanogranular thin films

- •Magnetic nanophases /nanocomposites:
- magnetic nanopowders
- core-shell nanoparticles (colloidal, clusters)
- magnetic nanoparticles in liquids (ferrofluids)
- magnetic nanoparticles in polymers
- magnetic nanophases in solid matrix

***2D regular arrays of GMR nanosensors on a single chip may be achieved!** PN II 12-129 / 2008 with IMT Bucharest

Scientific output 2005 – 2010 on magnetic nano-materials:

- Over 70 scientific articles in ISI journals and 100 communications at international conferences
- Cumulated ISI Impact Factor: 120
- Over 250 citations in ISI journals

Participation in international projects 2005 – 2010 on nano-materials:

- 15 bilateral cooperations
- 2 NATO projects & linkage grants
- 2 EU FP 6 and FP 7 projects

Technological output 2005 – 2010 on nano-materials:

2 national patents

National projects CEEX and PN II 2005 – 2010 on nano-materials: 14

Conclusions

NIMP has expertise, resources and results in Nanoscience and Nanotechnology

NIMP can be a reliable partner in any collaboration in Nanoscience and Nanotechnology

Thank You!