

National Institute of Materials Physics

Ge nanocrystal formation versus Ge diffusion in Ge/SiO₂ multilayers

Magdalena Lidia Ciurea, Ana-Maria Lepadatu, Ionel Stavarache, Toma Stoica, Valentin Serban Teodorescu

A 12-a ediție a Seminarului Național de Nanoștiință și Nanotehnologie, Biblioteca Academiei Române, București

Outline

Motivation/advantages

Ge/SiO₂ multilayer structures

Transmission electron microscopy

Raman spectroscopy

Photoluminescence

Ge-SiO₂ films

Transmission electron microscopy

Conclusions

Motivation/advantages

Aim: to develop engineered materials for application in

- non-volatile memory (NVM) devices:
 - MOS-like devices with Ge NCs (2D film) embedded in gate oxide at tunnelable distance in respect to Si.
- ✤ solar cells:
 - ensure light absorption over almost the complete sunlight spectrum 0.4 2 $\mu m;$
 - reduce the thermalization loss of energetic excitons.
- photodetectors

Motivation:

- tailored formation of Ge NCs for both NVM devices and photovoltaic applications;
- ❖ using multilayers/superlattices → reliable tool to control Ge NCs size after segregation → charge transport via direct tunneling;
- ❖ using thin films Ge → NCs with different diameters ⇔ absorption in a larger wavelength range.

1. Ge/SiO₂ multilayer structures

Preparation of structures

> (100) Si substrates **cleaned** using Piranha solution + dip in diluted HF

- > **Preparation** by magnetron sputtering of $SiO_2/2x(Ge/SiO_2)/Si$ structures:
 - \Rightarrow SiO₂ layers : RF sputtering SiO₂ target at 100 W, 10 min;
 - ⇒ Ge layers : DC sputtering Ge target at 5 W, 25 min first layer and 30 min - second layer.
- > Annealing in N₂ at 650, 700 and 800 °C:
 - conventional tube furnace 1 h
 - RTA equipment 10 min

Transmission electron microscopy

Annealed structures in furnace

As deposited structure:

- thickness ~ 100 nm

After annealing at 700 °C:

- thickness ~ 85 nm;
- diffusion of Ge to the middle of SiO₂ layers ⇒ formation of Ge NPs.

Annealing at 800 °C:

- thickness ~ 100 nm;
- diffusion of Ge more pronounced ⇒ upper Ge layer transformed in clusters distributed in oxide;
- Ge diffusion close to the structure surface > diffusion close to the substrate.

Annealed structures in RTA equipment

As deposited structure:

- thickness ~ 100 nm.

After annealing at 700 °C:

- thickness ~ 85 nm;
- diffusion of Ge into SiO₂ much reduced.

Annealing at 800 °C:

- thickness ~ 85 nm;
- diffusion of Ge into SiO_2 much reduced.

Annealed structures in RTA equipment

After annealing at 700 °C

Ge cubic NCs: not uniformly distributed, random crystallographic orientation, 5 – 7 nm size.

Initial location of the (undiffused) Ge layers: maxima of Ge concentration & minimum O and Si concentrations \rightarrow crystallized Ge remains in the as deposited positions \rightarrow Crystallization precedes the diffusion.

HRTEM

glue:

SiO2

SiO2

SiO2

Ge

Ge

Si

(C)

50 nm

Annealing in furnace

As deposited structure:

 amorphous Ge layers: broad asymmetric peak at about 274 cm⁻¹.

Annealing:

<u>650 °C:</u>

- Ge NCs peak ⇔ TO phonon mode;
- long tail (low energy) ⇔ amorphous Ge or/and Ge clusters in SiO₂.

higher temperatures, 700 and 800 °C:

- strong diffusion and spreading of Ge in SiO₂
 ⇒ Ge scattering mode drastically diminished;
 practically not detected (covered by the second order Raman scattering at 300 cm⁻¹ in Si substrate);
- Ge loss by oxides.

RTA annealing

- Ge NCs peak (297.7 298.4 cm⁻¹) red shifted than bulk c-Ge (299.8 cm⁻¹) ⇔ TO phonon mode and/or tensile strain;
- asymmetry and broadening of peak ⇔
 phonon confinement in Ge NCs.

Phonon quantum confinement model (Richter model)

$$I(\omega) \propto \int_{0}^{1} e^{-\frac{q^{2} \times (d/a)^{2}}{4}} \times \frac{4\pi q^{2}}{(\omega - \omega(q))^{2} + (\Gamma_{c}/2)^{2}} dq$$
$$\omega(q) = \sqrt{\omega_{c}^{2} - \frac{43565q^{2}}{q + 0.5766}}$$

- $\vec{q} \neq 0$ phonon wave vector (in $2\pi/a$ units)
 - Ge lattice constant (0.566 nm)
 - d nanocrystal diameter
 - Γ_c bulk c-Ge FWHM
 - $\omega(q)$ phonon dispersion
 - $\omega_{
 m c}~$ position of bulk c-Ge peak

 \rightarrow d₂ = 9.5 nm & d₁ = 3 nm

♦ RTA at 650 °C => d_2 = 8 nm, at 700 °C => d_2 = 8.5 nm & d_1 = 3 nm

а

- 2 main sharp peaks at 1004 and 1008 meV, FWHM = 2 meV;
- 2 additional broad peaks at 991 meV (FWHM = 20 meV) and 1004 meV (FWHM = 11 meV) – deconvolution;
- IR PL emission bands recombination of excitons in two step transitions involving surface states located at the Ge nanocrystal surface.

2. Ge-SiO₂ films

Preparation of films

- \succ co-sputtering of Ge and SiO₂: 40 % Ge & 60 % SiO₂
- \succ annealing in H₂, 2 atm.

Transmission electron microscopy

Stavarache et al. J Nanopart Res (2011)

HRTEM image of **dark contrast NPs network**:

- \Rightarrow Amorphous globe-shaped NPs:
 - 5 nm average size;
 - separation similar distance
 or less.

Crystallization of dark contrast NPs **under the electron irradiation** during the HRTEM observations:

\Rightarrow Ge nanocrystallites with cubic structure.

 \Rightarrow NPs A and B show the same crystalline orientation \Rightarrow Initial amorphous Ge NPs were connected.

Stavarache et al. J Nanopart Res (2012)

Conclusions

\Box SiO₂/2x(Ge/SiO₂)/Si multilayer structures annealed in furnace or by RTA in N₂

- The faster crystallization of Ge in RTA process is favored by its reduced diffusion; Ge diffusion from crystalline phase in amorphous SiO₂ is low compared to Ge diffusion from amorphous phase.
 - ➔ faster Ge NCs formation has a positive feedback in reducing the Ge diffusion → Ge NCs layers located closer to the position of the as deposited samples.
- Raman: good theoretical fit of spectra by superposition of light scattering on big (8 9.5 nm) and small NCs (3 nm) & amorphous Ge clusters in SiO₂ (tails).
- IR PL: strong emission at low T, with two main sharp peaks close to 1000 meV; energy separation ≈ 4 meV; ← recombination of excitons in two step transitions involving surface states located at the Ge NC surface.

\Box Ge-SiO₂ films annealed in H₂

Two kinds of features: low density of big tetragonal Ge NCs and high density of small amorphous Ge NPs embedded in SiO₂.

\Box Formation of Ge NCs/NPs in amorphous SiO₂ matrix strongly depends on annealing conditions.

Thank you for your attention!