

Dielectric ceramic and nanopowders of holmium-doped BaTiO₃ prepared

by sol-gel combustion

Marin Cernea, Roxana Radu, Viorica Stancu, Cristina Dragoi, Alexandru Costinoaia, Ioana Pintilie

National Institute of Materials Physics, P.O. box MG-7, Bucharest-Magurele, 077125, Romania

Aim: Investigation of the structure and dielectric properties of derived $Ba_{0.97}Ho_{0.03}TiO_3$ ceramics prepared by sol-gel combustion

Sol-gel synthesis of Ba_{0.97}Ho_{0.03}TiO₃

Synthesis conditions

- Ba precursor: barium acetate Ba(CH3CO2)2
- Ti precursor: titanium (IV) isopropoxide Ti(OC₃H₇)₄
- Ho precursor: holmium oxide Ho.O.
- Sol aq. 1M Ba(CH₃CO₂)₂
- Holmium oxide disolved in H2O+HNO3
- · Peroxo-citrate complex of titanium isopropoxide:
- titanium (IV) isopropoxide;
 - nitric acid;
 - citric acid:
 - hydrogen peroxide;
 - -water

- Molar ratio citric acid:metal cations = 2.5:1

- Molar ratio citrate:nitrate (CA/NO3) =1.3.
- pH: 5; (ammonium hydroxide).
- Refluxing temperature: ~75°C
- Dry gel temperature: 100 °C
- Firing temperature of the gel to obtain Ba007H0003TiO3: 1100 °C
- Sintering temperature to obtain BT-Ho_{0.03} ceramic: 1350 °C, 2h.

Microstructures analysis

Fig.1. SEM images of BT-Ho $_{0.03}$ precursor gel dried at 100 $^{\circ}\mathrm{C}$ (a), fired at 700 $^{\circ}\mathrm{C}$ (b) and 1100 °C (c) and, ceramic sintered at 1350 °C, 2h in air (d). Average grains size: 30 nm (b), 250 nm (c) and 2 µm (d)

Structure analysis

Fig.2. TEM and HR-TEM micrographs of the (Ba,Ho)TiO3 gel heated at 700 °C

Fig.4. Variation of dielectric constant and dielectric loss of $\mathrm{BT-Ho}_{0.03}$ ceramics with temperature and frequency

Conclusions

- Powder of BaTiO₃ doped with 3 mol% Ho, consisting of Ba_{0.97}Ho_{0.03}TiO₃ as main phase was obtained by heating the precursor gel at 700 °C.
 The as-prepared powder is composed of particles with agglomerated structures; the average size of the crystallites was 30 nm.
- The XRD patterns of the powders and sintered BT-BT₀₀₅ ceramics indicated a material composed of Ba_{0.97}Ho_{0.05}TiO₃ crystallized on the tetragonal-BaTiO₃ lattice, and traces of Ho₂Ti₂O₅. • The BT-Ho_{0.03} ceramics prepared by sol-gel auto-combustion, presented good dielectric properties.

References

[1] M. Cernea, G. Montanari, C. Galassi and A. Costa: Synthesis of La and Nb doped PZT powder by the gel-combustion method, Nanotechnology, 17, 1731 (2006).

[2] M. Cernea, E. Andronescu, R. Radu, F. Fochi, C. Galassi, "Sol-gel synthesis and characterization of BaTiO₃ doped-(Bi_{1/2}Na_{1/2})TiO₃ piezoelectric ceramics", Journal of Alloys and Compound Materials, 490 (2010) 690-694

Fig.3. XRD patterns of sol-gel processed (Ba, Ho)TiO $_3$ powder, heated at 1100 and 1300 °C

X-ray diffraction analysis results

- Ba_{0.97}Ho_{0.03}TiO₃ cryst. on the t-BaTiO₃ lattice, BaTi₂O₅, Ho₂TiO₅ and
- Hole $Dir_{2}O_{5}$, at 700-1100 °C (powder); $Ba_{0.97}Ho_{0.03}TiO_{3}$ cryst. on the t-BaTiO_{3} lattice, and $Ho_{2}Ti_{2}O_{5}$, at 1300 °C
- Ba_{0.97}Ho_{0.03}TiO₃ cryst. on the t-BaTiO₃ lattice, and Ho₂Ti₂O₅, at 1350 °C

and, ceramic sintered at 1350 °C

(ceramic).

Tab.1. Temperature coefficient of capacitance (TCC) measured at 100 Hz and 1 kHz for (Ba,Ho)TiO3 ceramic

Ba _{0.97} Ho _{0.03} TiO ₃	f=100Hz	TCC	f=1 kHz	TCC	
T _{ref} =303.94 °C	C _{RT} =62 pF		C _{RT} =52 pF		
T ₁ =273.15 °C	$C_1 = 63 \text{ pF}$	TCC1=5.38·10-4	$C_1 = 56 pF$	TCC1=2.56·10-3	
T ₂ =333.76 °C	C ₂ =68 pF	$TCC_2 = -3.31 \cdot 10^{-3}$	C ₂ =53 pF	$TCC_2 = -6.41 \cdot 10^{-4}$	
		TCC=-1.33·10 ⁻³		TCC=0.96·10-3	

Table 2. Tc and $T^{}_{0}\,\text{obtained}$ from the slope of $1/\epsilon'\,\text{vs}$ T plot at various frequencies for Ba. ...Ho. ...TiO. ceramic

Buo ogrico og 1103 cerunne					
Frequency	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz
Curie temperature Tc (°C)	132	132	132	132	132
Curie-Weiss Temperature T ₀ (°C)	102	107	110	111	112