

A 9-a editie a Seminarului National de nanostiinta si nanotehnologie

STUDY OF Ge NANODOTS EMBEDED IN AMORPHOUS SiO₂

Magdalena Lidia Ciurea

NATIONAL INSTITUTE OF MATERIALELS PHYSICS MAGURELE, P.O. BOX MG-7, 077125, ROMANIA

Outline:

✓ Preparation and measurements

✓ TEM investigations

✓ XPS investigations

✓ Conclusions

✓ Preparation and measurements

Preparation methods:

sol-gel: *GeCl4, TEOS (tetraethyl orthosilicate) precursors in ethanol;
*Ge/Si molar ratio was varied between 3 % and 12 %
*deposition : spinning coating method
*heating in air at 500 – 600 °C (after drying)
*Annealing in N₂ (1 atm and 800 °C) or H₂ (2 atm and 500 °C)

- radio frequency magnetron sputtering:

150 W RF constant power, argon pressure
0.3 Pa., 1.78 MHz generator for 1h
Ge/Si molar ratio 40 % in the GeSiO films
Annealing in H₂ (2 atm and 500 °C)

Measurements: TEM, SAED, EDX, XPS

TEM: preparation of specimens

cross section method and ion milling – sol-gel films (~280 nm)
extraction - scratching the film surface with a thin diamond tip – sputtered films (~1500 nm)

XPS analysis:

excited with unmonochromatized Al Ka (1486.61 eV) radiation and monochromatized Ag La (2984.3 eV) radiation

✓ TEM investigations

Fig. 1. Low magnification XTEM image of sol-gel film annealed in N_2

Fig. 2. Interface region of the silicon substrate with the GeSiO sol-gel film annealed in N_2 . A 10 nm layer without nanodots appears at the interface

Fig. 3. Detail of the XTEM image in the midst of the film thickness: globular amorphous nanodots rich in Ge in contrast with the SiO_2 matrix.

Fig. 4. Size distribution (3 - 6 nm) of the rich Ge nanodots in the SiO₂ matrix. Average size: 3.8 nm.

Fig. 5. Plan view TEM image of the Si(12 % Ge)O sol-gel film annealed in H_2 .

Fig. 6. Distribution of the nanodots in the Si(12 % Ge)O sol-gel film. Average size: 4.3 nm

Fig. 7. Plan view TEM image of a fragment from the sputtered film

Fig. 8. Size distribution of the particles in the sputtered film. Average size: 20 nm

Fig. 9. SAED pattern of the sputtered film. Strong diffraction spots are distributed in a clear ring (lattice distance: 0.271 nm). Main contribution from crystalline nanodots larger than 50 nm

Table I. SAED experimental measurements and the possible crystalline structures expected for the Ge precipitate in amorphous SiO₂ matrix

GeO PDF nr: 30-0590	Ge PDF nr: 51-0767	Ge Tetragonal PDF nr: 18-0549	Ge Cubic PDF nr: 04-0545	Experimental measurements SAED pattern in fig 9		
nonindexed	a = 0.962 nm c = 0.578 nm	a = 0.593 nm c = 0.698 nm	a = 0.5657			
d(nm) (hkl) Inten.	d(nm) (hkl) Inten.	d(nm) (hkl) Inten.	d(nm) (hkl) Inten.	d(nm) eror. Relative Inten.		
0.502 nm 60 0.430 nm 40 0.347 nm 60 0.325 nm 60 0.305 nm 100 0.270 nm 100 0,262 nm 60	0.3650 (111) 12 0.3131 (210) 24 0.2734 (012) 100 0.2475 (112) 4 0.2316 (310) 19 0.1847 (222) 81 0.180 (312) 59 0.1754 (203) 61	0.452 (101) 6 0.359 (111) 16 0.301 (102) 40 0.2728 (201) 100 0.268 (112) 20 0,2478 (211) 16 0.187 (310) 20 0.181 (311) 20	0.3266 (111) 100 0.2000 (220) 57 0.1706 (311) 39 0.1414 (400) 4 0.12980 (331) 10	0.411 +/- 0.002 nm small 0.389 +/- 0.002 nm small 0.271 +/- 0.001nm strong 0.247 +/- 0.001nm strong 0.238 +/- 0.002nm small 0.185 +/- 0.001nm medium 0.157 +/-0.001 nm medium 0.133 +/- 0.001 nm small		

Fig. 10. HRTEM images of the sputtered film. A – crystallized Ge nanodot lattice interfanges correspond to tetragonal phase B – amorphous Ge rich nanodots

Fig. 11. EDX spectra of the SiGeO films. A – spectrum of the SiGeO (3%Ge) sol-gel film. B – spectrum of the SiGeO (12%Ge) sol-gel film; C – spectrum of the sputtered SiGeO (40%Ge) film

Fig. 12. Survey scan using monochromatized Ag L_{α} on sputtered sample. Insert: region with binding energies lower than 200 eV. **Fig. 13.** Si 2p-2s and Ge 3p-3s core level spectra from a sol-gel sample; Comparison:

- clean Si(100) sample,
- oxidized Ge
- Ge sample cleaned by ion sputtering

Table II. Si and Ge core-level positions in the various samples investigated (in bold: samples of
interest), together with some references from the literature (in italic). Units: electron-volts.
Typical errors: $\pm 0.1 \text{ eV}$

Core level Sample	Si 2p	Ge 3p _{3/2}	Si 2s	Ge 3s	Ge 2p _{3/2}	
Si (001)	99.3		150.6	Ret Star	-	
oxidized Ge crystal	ATUS TO A LOS	125.6	124-20	185.7	1221.3	
sputtered Ge crystal	and the fait	121.5	-	181.2	1217.3	
GeSiO (sol-gel)	104.2	(126.2)	155.2	10-14	1221.3	
GeSiO (magnetron sputtering)	101.6	123.9	151.2	181.5	1220.7	
Si, (Atzrodt et al. 1980)	99.3		-		-	
Ge, (Shalvoy et al. 1977)		121.2	-	19-1-C		
SiO ₂ , (Kerkhof et al. 1978)	103.9	the total of	and the	12	1.10-00	
SiO, (Nguyen et al. 1989)	101.7		1252	Elen an	Sand of St.	
GeO ₂ , (Morgan et al. 1973)	COR BUILT	125.3	125.3 -			
GeO, (Morgan et al. 1973)	1000 (1.5202)	0-65	- 41- 7 C		1221.5	

Fig. 14. Ge $2p_{3/2}$ core level (monochromatized Ag L_{α} source): - sol-gel sample - sputtered sample The spectrum of the sample prepared by magnetron sputtering was artificially shifted upwards by + 450 cps **Fig. 15.** O 1s core level in oxidized Si(100), as compared with the corresponding spectrum in sol-gel prepared GeSiO

538

540

Table III. Core level intensity analysis, in order to derive the Ge/Si atomic ratio in the investigated GeSiO samples

$Level \rightarrow$	Si 2p			Ge 3p _{3/2}			Ge 2p _{3/2}					
Sample ↓	int.	ASF	corr.	%	int.	ASF	corr.	%	int.	ASF*	corr.	%
magn.sp.	23.5	0.25	94	25-27	113	0.4	282.5	75	76.3	0.3	254.4	73
sol-gel	91	0.25	364	94	-	0.4	-	-	1.77	0.3	5.9	б

✤ Ge nanodots in the sol-gel films are amorphous. There average size increases with Ge concentration from 3.8 nm in GeSiO (3 % Ge) to 4.3 nm for the GeSiO (12 % Ge) films.

✤ In sputtered films (40 % Ge), two Ge different nanostructures were observed :

- > crystalline tetragonal nanodots,
- > a network of Ge-rich nanostructures in the amorphous silicon oxide matrix.

The surface of sol-gel films: a mixture of GeO₂ and SiO₂.
 The sputtered films surfaces: contain both Ge and Si suboxides.
 In all cases, the Ge concentration at the surface strongly exceeds the volume concentration: (from preparation and EDX).

* The reduction process in the sol-gel films is mainly controlled by oxygen diffusion.

Acknowledgements

This work was supported from Project No. 471/2009 (ID 918/2008), Ideas Program, National Research, Development and Innovation Plan 2007 – 2013.

Working team:

National Institute of Materials Physics:

Ionel Stavarache, Ana-Maria Lepadatu, Nicoleta Georgiana Gheorghe, Marius Adrian Husanu, George Stan, Dan Marcov, Adrian Slav, Gheorghe Iordache, Tionica Stoica, Valentin Serban Teodorescu, Cristian Mihail Teodorescu, Magdalena Lidia Ciurea

Vladimir Iancu

Thank you for your attention!!!