Defect assisted localization of Mn²⁺ activating ions in the core of the ZnS quantum dots

Sergiu V. NISTOR, Mariana STEFAN, Leona C. NISTOR, Daniela GHICA, Doina C. MATEESCU

INCDFM, Magurele-Bucuresti, Romania

Seminarul National de Nanostiinta si Nanotehnologie, Editia a 9-a, Amfiteatrul Academiei Romane, Bucuresti, 16 martie 2010

Outline of the presentation

- **1.** Small nanocrystals (quantum dots QDs) of luminescent cubic ZnS doped with transition ions.
- Developing new materials from known semiconductors.
- 2. Localization and incorporation of Mn²⁺ ions in cZnS:Mn and other II-VI QDs.
- Present situation and difficulties.
- **3. Self-assembled cZnS:Mn QDs, a nanomaterial with enhanced properties.**
- **Synthesis, structure and morphology.**
- **4. Localization and incorporation of substitutional Mn²⁺ ions in cZnS:Mn QDs.**
- Correlated multifrequency EPR and HRTEM investigations.
- **The defect assisted localization of the Mn²⁺ ions in the core of cZnS QDs.**
- **The ELDA mechanism of impurity incorporation in cZnS QDs.**
- 5. Conclusions : A new avenue of research opens !

Small nanocrystals (quantum dots – QDs) of cubic ZnS doped with transition ions

Nanomaterials: developing known semiconductors in new materials:

- Luminescent ZnS doped with transition ions (3dⁿ, 4fⁿ) ⇒ Phosphor and electroluminescent II-VI semiconductor. Non-toxic !!
- Nanosized cubic ZnS small nanocrystals (quantum dots QDs). Under investigation since 90-ties (*Bhargava et al, Phys. Rev. Lett.* 72, 416, 1995)
 The quantum confinement (QC) effect (d ≤ 6 nm = 2R_{excit}) ⇒
- Changes in the electronic structure of levels \Rightarrow Shift of spectra: absorption (towards blue) and emission (towards red).
- Concentration of the oscillator strength in a few transitions ⇒ Higher luminescence efficiency.

<u>New size related effects:</u> Large surface + stabilizing coating + disorder

Localization and incorporation of Mn²⁺ ions in cZnS and other II-VI QDs. Present situation

- **Localization of activating impurity** \Rightarrow controlling doping + resulting properties
- Electron Paramagnetic Resonance (EPR) = the experimental technique of choice to determine the localization of paramagnetic activating ions.

<u>Present situation (after > 15 years of investigations):</u>

- EPR of cubic ZnS:Mn nanocrystals failed to determine accurately the spectra parameters and localization of the Mn²⁺ activating ions !
- □ Too many (+ 20) reported Mn^{2+} centers with different EPR spectral parameters + unexplained local distortion at substitutional (T_d) cubic sites !

P. A. Gonzales Beermann et al, J. Nanoparticle Res. 8, 235 (2006) and ref. cited therein

 <u>The observed high concentrations of Mn²⁺ impurity ions</u> in cubic II-VI QD prepared by low temperature (< 350 °C) synthesis <u>cannot be explained</u> by present adsorption based mechanisms. S.C. Erwin et al., Nature 436, 91 (2005); D. J. Norris et al., Science 319, 1776 (2008)

Self-assembled cZnS:Mn QDs, a nanomaterial with enhanced properties

- Luminescent cZnS QDs activated with Mn²⁺ ions, self-assembled into a mesoporous structure, have been prepared by colloidal chemistry in the presence of a nontoxic surfactant [1].
- The restrictive effect of self-assembling yields a narrower distribution of sizes at $d_m = 2 \text{ nm}$, and a higher degree of crystalline order [2] \Rightarrow Improved EPR spectra resolution = accurate spectral parameters.

[1] L. C. Nistor, C. D. Mateescu, R. Birjega, S. V. Nistor, Appl. Phys. A 92, 295 (2008)
[2] S. V. Nistor, L. C. Nistor, M. Stefan et al., Superlattices & Microstructures 46, 306 (2009)

Localization and incorporation of Mn²⁺ activating ions in cZnS QDs

Analysis of multifrequency EPR spectra \Rightarrow Mn²⁺ ions localized at 3 positions: - Substitutional Mn(I) and surface centers Mn(II), Mn (III). - The substit. Mn²⁺ ions are localized at Zn²⁺ sites next to an extended lattice defect: twin (T) / stacking fault (SF).

- The HRTEM images \Rightarrow analysis shows such defects in ~ 30% of the cZnS QDs.

[3] S. V. Nistor, M. Stefan, L. C. Nistor et al., Phys. Rev. B81, 035336 (2010)

Conclusions. A new avenue of research is open !

- Mn²⁺ activating ions are preferentially localized in the core of cZnS and of other cubic II-VI QDs at substitutional cation (Zn²⁺) sites next to an extended lattice defect (twin / stacking fault).
- The neighboring defect induces a local distortion of the crystal field at the Mn²⁺ activating ion ⇒ changed quantum properties.
- The extended planar lattice defects are essential in the incorporation and localization of Mn²⁺ activating ions in the core of cZnS and other cubic II-VI semiconductor QDs, prepared at low temperatures (T < 350 °C).
- The proposed extended lattice defects assisted (ELDA) incorporation of impurities mechanism offers the scientific basis for developing procedures for preparing cZnS QDs with controlled doping, for various applications: electro-luminescent devices, photocatalysts, functionalized biological markers, biomolecules separation, etc.
- Our results open a new avenue of research concerning the role of intrinsic lattice defects in the incorporation and localization of activating impurities and resulting properties of QDs.

Research center for advanced ESR techniques CetRESav (http://cetresav.infim.ro/)

CetRESav conducts basic and applied research in condensed matter physics, materials science and related scientific domains by developing and employing advanced ESR/EPR methods and techniques.

Equipment:

1. X (9.8 GHz)-band ESR CW spectrometer Varian E12 - Bruker EMX plus.

- 2. Q (34 GHz)-band ESR CW spectrometer ELEXSYS E500Q Bruker.
- 3. Automatic liquid He plant LHeP18 from Cryomech.
- 4. X-band FT ESR spectrometer ELEXSYS E580 Bruker (from May 2010).

