

Strain engineering; a new trend in nanotechnologies

Doina Raducanu¹ (doina.raducanu@mdef.pub.ro), Vasile-Danut Cojocaru^{1,2}, Ion Cinca¹

> ¹Universitatea "POLITEHNICA" din Bucuresti ²INCD pentru Microtehnologie - IMT Bucuresti

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

18 mai 2011, Biblioteca Academiei Romane

Synopsis

Strain Engineering Concept

Strain Engineering applications: thin films, nanomembranes, quantum dots, ultrastrength materials (graphene, nanowires, nanotubes, nanopillars, nanostrips), applications in mollecular biology

Fundamentals of ultra-strength: stress versus strain at nanoscale, inelastic strain, modeling

Experimental data about ultra-strength Ti based naostructured materials

Strain Engineering Concept is based on:

- material's physical and chemical properties are functions of the lattice parameters of the underlying crystal lattice, or - the elastic strain, $\varepsilon_{elastic}$, with respect to the stress-free reference state;

- fundamentally, electronic structure changes with $\boldsymbol{\epsilon}_{elastic}$.

Physical and chemical properties depending on $\varepsilon_{elastic}$: electronic and phononic band gaps open or close with $\varepsilon_{elastic}$, thermal, spin, magnetic, transport, and electro-optical characteristics, catalytic activities of metal surfaces vary sensitively with $\varepsilon_{elastic}$

Definition: Elastic strain engineering is defined as achieving the desired functional properties by controlling $\varepsilon_{elastic}$ (x), where x denotes position vector in a material. The properties could be electronic magnetic optical, plasmonic, ionic or phononic, thermoelectric, catalytic etc.

Conceptually: given any material property, A, that one wants to optimize >>> its derivative with respect to the elastic strain $\delta A/\delta \epsilon_{elastic}$ is non-zero at zero strain >>> gradient $\delta A/\delta \epsilon_{elastic}$ can lead to the optimal property

Practically: there are specific particularities for each material and each application to manipulate by $\varepsilon_{elastic}$ a specific desired property

T. Zhu, J. Li, *Ultra-strength materials*, Progress in Materials Science 55, 710-757, 2010

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

Strain Engineering applications

Various materials and applications:

- thin films;
- nanomembranes;
- quantum dots;
- ultra-strength materials (graphene, nanowires, nanotubes, nanopillars, ultra-thin strips);
- applications in mollecular biology;
- etc.

Strain Engineering applications

thin films & nanomembranes;

Applying strain to Si >> breaks the crystalline symmetry >> electronic band structure modifications. Band structure contributes to the magnitude of charge carrier mobility

D. M. Paskiewicz, S. A. Scott, D. E. Savage, M. G. Lagally, *Elastic Strain Engineering in Si Nanomembranes*, Abstract #1938, 218th ECS Meeting

- Strain acts as an energetic term
- Is possible to control strain balance
- Strain controlled by nanostresors

C. Carter-Coman, A. S. Brown, R. Bicknell-Tassius, N. M. Jokerst, M. Allen, *Strain-modulated epitaxy: A flexible approach to 3-D band structure engineering without surface patterning*, Applied Physics Letters 69 (2), 257-259, 1996

F. Liu, P. Rugheimer, E. Mateeva, D. E. Savage, M. G. Lagally, *Nanomechanics: Response of a strained semiconductor structure*, Nature 416, 498, 2002

Strain Engineering applications quantum dots;

Ouantum dot exciton states in the case of the confining potential of a high (left) and low (right) symmetry. Fine structure splitting of the linearly polarized eigenstates in the low symmetry case is denoted $E_{\rm FS}$. $E_{\rm ex}$ denotes exciton energy.

Strain reduction influences the magnitude of the fine structure splitting of quantum dot excitons(thermally annealed InGaAs quantum dot (QD) samples with differing degrees of In/Ga.

A. I. Tartakovskii, M. N. Makhonin, I. R. Sellers, J. Cahill, A. D. Andreev, D. M. Whittaker, J-P. R. Wells, A. M. Fox, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. J. Steer, H. Y. Liu, M. Hopkinson, *Effect of thermal annealing and strain engineering on the fine structure of quantum dot excitons*, Physical Review B 70, 193303, 2004.

mollecular biology;

Strain Engineering in mollecualr biology -Engineering a strain is integral to modify the host and its properties towards improvising quantitative and qualitative presence of desired products in a given biological system (*Syngene/ http://www.syngeneintl.com/*)

Strain Engineering applications

ultra-strength materials (graphene, nanowires, nanotubes, nanopillars, ultra-thin strips);

Single-crystal Ni pillars between 150 and 400 nm in diameter-micromachined using an FEI 235 Dual Beam focused ion beam (FIB)

T. Zhu, J. Li, S. Ogata, S. Yip, *Mechanics of Ultra-Strength Materials*, MRS Bulletin, 34, 167-172, 2009

Table I. Experimentally Measured Ultra-High Strengths.				
Material	Number of Layers or Diameter (nm)	Measured Strength (GPa)	Ideal Strength ~ E/10 (GPa)	Reference
CNT	SW	30	100	Falvo et al.8
CNT	MW	30	100	Yu et al.9
CNT	MW	97-110	100	Peng et al.10
WS ₂ -NT	MW	3.8-16.3	15	Kaplan-Ashiri et al.11
ZnO-NW	30	7	14	Wen et al.12
Si-NW	100-200	12	17	Hoffmann et al.13
Ag-NW	16.5	7.3	8	Wu et al.14
Au-NW	40	5.6	8	Wu et al.15
Au-NP	300	0.8	8	Greer and Nix16
Au-NP	300	1	8	Volkert et al.17
Si-NS	20-50	20-50	17	Gerberich et al.18
CdS-NS	200-450	2.2	4.6	Shan et al.19
Graphene	ML	130	100	Lee et al.20

Note: CNT, carbon nanotubes; NT, nanotubes; NW, nanowires; NP, nanopillars; NS, nanospheres; ML, monolayer; SW, single-wall; MW, multi-wall; *E*, Young's modulus.

Z. W. Shan, R. K. Mishra, S. A. Syed Asif, O. L. Warren, A. M. Minor, *Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals*, Nature materials, 7, 115-119, 2008

Fundamentals of ultra-strength - stress versus strain at nanoscale, inelastic strain, modeling

Ultra-strength phenomena definition:

The material's sample-wide stress has reached a significant fraction of its ideal strength and this state persists for a considerable period of time (seconds till years) without significant stress relaxation; "significant fraction" to be > 1/10 irrespective of shear, tensile or compressive stresses, unless otherwise specified

T. Zhu, J. Li, *Ultra-strength materials*, Progress in Materials Science 55, 710-757, 2010

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

Ultra-strength phenomena characteristics:

- broader than that of high-pressure physics - large non-hydrostatic stresses due to shear, tension and compression may be sustained;

- in **conventional materials**: the applied non-hydrostatic load tends to be relaxed by plastic deformation and fracture;

- in **ultra strength materials** the relaxation is posible by **inelastic deformation mechanisms**;

 - in nanostructured materials a much larger range of non-hydrostatic stresses can be achieved, >>>> controlling the physical and chemical properties of materials (by strain engineering - SE).

T. Zhu, J. Li, *Ultra-strength materials*, Progress in Materials Science 55, 710-757, 2010

The inelastic strain is physically attributed to: dislocation glide, deformation twinning, crack formation and growth phase transformation, mass transport by diffusion etc; in an ideal defect-free structure at T = 0 K: $\varepsilon_{inelastic}$ stays zero unless the ideal strength is reached

 $\epsilon_{elastic}$ depends locally on stress in a one-on-one correspondence, $\epsilon_{inelastic}$ depend on stress with a highly non-linear, and temperature and history dependent relation.

- specific items: mechanical annealing, length scale effect; time scale effect; image force for the force experienced by a dislocation in the vicinity of a freesurface (a hypothetical negative dislocation is assumed to exist on the other side of the boundary)

T. Zhu, J. Li, *Ultra-strength materials*, Progress in Materials Science 55, 710-757, 2010

Modelling

-four distinct levels of microstructural complexity: electronic-structure, atomistic, mesoscale, and continuum;

- at each level: **corresponding methods of simulation**, first-principles quantum mechanical calculations, classical molecular dynamics and Monte Carlo simulations, finite-element methods, and continuum mechanics;

- **multiscale modeling**: a particular challenge, especially the connection between atomistic and the mesoscale.

The four characteristic length scales in multiscale materials modeling.

S. Yip, J. Li, W. Cai, J. Chang, D. Liao, *Atomistic measures of mechanical deformation and thermal transport processes*, Computational Fluid and Solid Mechanics: Proceedings, First MIT Elsevier, New York, 2001. ISBN: 0080439446.

The *in-situ*, quantitative nanoscale compression tests - inside a JEOL 3010 (300kV) transmission electron microscope (TEM). The holder has a nominal force and displacement resolution of 0.1 N and 0.5 nm, respectively. (*National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California*)

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

Experimental data about ultra-strength Ti based naostructured materials

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie

18 mai 2011, Biblioteca Academiei Romane

In the case of SPD processed alloy the XRD analysis showed the presence of the β -Ti phase. Two sub-beta phases were identified:

 β 1-Ti phase quantity 55.75±2.59%; β 2-Ti phase quantity 44.25±1.61%.

Calculated crystallite size (coherent crystalline domains) for both b-Ti phases were : β 1-Ti phase about **6 nm**;

 β 2-Ti phase about 4 nm.

Precursor HRTEM image *Tecnai G2 F30 S-TWIN* (UPB)

TESCAN Vega II-XMU SEM fitted with a micromechanical testing module GATAN MicroTest 2000N

Mechanical investigations in the case of SPD processed alloy, in comparison with ascast state, **show a steep increase in ultimate tensile strength from 682 MPa to 2423 MPa**, a high decrease in elongation to fracture from 24% to 1.5%. For this alloy, in SPD state, is difficult to achieve high strength and high ductility at the same time.

Possible applications of ultra-thin – ultra-strength Ti-based strips in MEMS applications:

- ultra-thin mechanical parts (gears);
- cantilevers;
- micro-gripers;
- strain-gages;
- etc.

Experimental data about ultra-strength Ti based naostructured materials

- **the physical mechanism**: a competition between the dislocation germination rate and the mobile dislocation annihilation rate - **an atypical strain hardening**;

- progressive activation and subsequent exhaustion of dislocation sourcesdislocations in ultra-thin can travel only very small distances before annihilating at free surfaces >>>> reducing the overall dislocation multiplication rate;

- concept of dislocation starvation - gliding dislocations leave the crystal more rapidly than they multiply >>>> very high stresses to nucleate new/mobile dislocations;

- the strength is defect nucleation controlled rather than propagation controlled.

Conclusions

- ultra-thin nanostructures structures contain a high density of initial defects after processing; can be made dislocation - free by applying purely mechanical stress.

Perspectives

- strain rate and temperature sensitivity investigation in ultra-strength materials domain;

- temperature-controlled nanomechanical testing is a direction for future growth;

- ultra-high stress correlation with diffusive and hybrid displacive - diffusive processes.