

A 8-a ediție a Seminarului Național de Nanoștiință și Nanotehnologie Academia Română, 27 aprilie 2009

NONCONVENTIONAL METHOD FOR SYNTHESIS OF **COBALT-FERRITE NANOPOWDER**

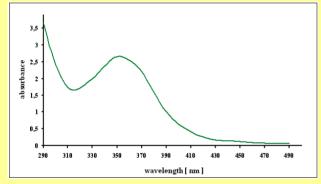
Rodica-Mariana ION. Dragos Viorel BREZOI – VALAHIA Universitaty of Târgoviste

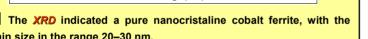
The **purpose** of our study was the incorporation hydrazine together with metallic cations in the structure of some oxalates for yielding coordination compounds, chemical precursors for low temperature synthesis of cobalt-ferrite nanopowder.

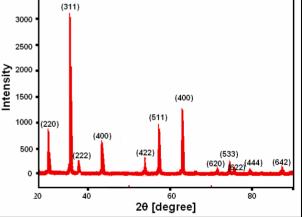
experimental

obtaining

Ammonium oxalate and a solution of hydrazine hydrate (1:3 molar ratio) were mixed and stirred under a nitrogen atmosphere at 80 oC for one hour to provide ammonium oxalate hydrazinate. A saturated mixture of cobalt and ferrous chloride solutions (1:2 molar ratio) was added slowly to the ammonium oxalate hydrazinate complex in a 1:1 molar ratio to obtain a precipitate of cobalt and ferrous oxalate hydrazinate complex. The precipitate was washed, filtered, and dried at 70 °C to avoid the thermal decomposition. Heated in air at 260 °C, the precursor decomposes exothermic producing a fine, crystalline powder of oxide ceramic material. This material was analyzed after a thermal treatment at 500 °C, in air, for one hour. The product has the chemical formula CoFe₂O₄.

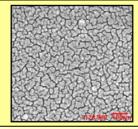

results and discussions


Chemical analyses confirm the molar ratio Co:Fe = 1:2 in ferrite powder. The content of Co and Fe (%) in the obtained powder is comparable with the content of Co and Fe in CoFe₂O₄.


Analized	Со	Fe
Content (%)	25.2	47.2

The UV-Vis absorption spectrum shows that the ferrite powder is identified by the charge transfer band at λ = 350 nm.

3500


grain size in the range 20-30 nm.

Mössbauer data confirmed that the appearance at 500 °C a partial inverse spinelic structure appears: [Co²⁺_{0.57}Fe³⁺_{0.43}]_{tetra}[Co²⁺_{0.43}Fe³⁺_{1.57}]_{octa}O²⁻₄

The Mössbauer parameters show that we have obtained the monophasic powder with magnetic properties.

Coordination	IS (mm/s)	QS (mm/s)	H _{eff} (kOe)	G (%)	
Fe ³⁺ tetrahedral	0.24	0	484	41.6	
Fe ³⁺ octahedral (0.36	0	512	30.7	
			496	14.8	
			478	14.8	
			442	14.8	

SEM image of Co-ferrite nanograins deposited on Si substrates. Most $CoFe_2O_4$ nanoparticles are well crystallized. CoFe₂O₄ particle size falls in the size range 20-30 nm.

✓ The SEM image of CoFe₂O₄ powder obtained deposited on substrate (×120000)

conclusions

The preparation of ultra fine cobalt ferrite powder by a wet chemical method and characterization by XRD, UV/Vis, Mossbauer spectroscopies, and SEM are discussed in this paper. The analyses show the presence of a homogenous compound with characteristic properties and well crystallized spinel structure, with formula CoFe₂O₄.

Acknowledgments: this work has been supported by National Excellence Programs PN2-22-110