NANOCOMPOSITES POLYMER-NANOCARBON AND POLYMER-NANOCLAYS AS ADVANCED MATERIALS FOR STRUCTURAL APPLICATIONS

I. Dinca¹, L. Dumitrache², I. Sandu³, L. Gavrila Florescu³, D. Rosu⁴, O. Cretu³, A. Stan¹, C. Nistor², Z. Vuluga², A. Stefan¹, I. Morjan³, I. Voicu³

¹National Institute for Aerospatial Research, Iuliu Maniu Bd., Bucharest, Romania ²Institute of Chemical Research, 202 Splaiul Independentei, CP 15-159, 76250 Bucharest, Romania ³National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Bucharest, Romania ⁴S.C. Compozite Brasov, 14A Plevnei St., 500187 Brasov, Romania

Motivation: — Through the use of nanofillers, either alone or in conjunction with micro-scale-structures, the quality of the structure increases with decreasing dimensions

— Additional interaction with carbon fibres could lead to superior properties of the performed composites

Objectives: The achievement of:

- epoxy-based composites reinforced by nanostructured organic/inorganic materials like laser-synthesized carbon nanopowder or montmorillonite-type clays.
- structural composites having as matrix one of above mentioned composites and additionally reinforced by carbon or glass fibres tissue.

The characterisation of nanocomposites

No	MATERIAL	Flexural Strenght daN/cm ²	Shore Hardness	Thermal Stability °C	Obs.
1	P401	950÷1000	75	50	
2	P401+2% Montmorillonit 30B	1025	83	56	
3	P401+2% Montmorillonit 93A	922	83	56	
4	P401+2% C ₂ H ₂ /C ₂ H ₄	1088	81	59	
5	P401+2% C ₂ H ₂ / SF ₆	850÷900	79	56	Porous
6	P401+2% C ₆ H ₆ / C ₂ H ₄	860	79	56	
7	P401+2% MWNT-CHINA	1102	85	59	
8	P401+2% SWNT-CHINA	960	77	55	Porous
9	P401+2% MWNT-RO	980	77	55	Porous
1). P401+2% Nanofibre-RO	880	78	55	Porous

Flexural modulus

The tensile strength of nanocomposites with 2% nanoffilers

Friction coefficients of nanocomposites P401+2% additives

M B30

NC INFLPR

Wear of nanocomposites P401 + 2% nanofillers

TEM analysis of nanocomposites

Nanoparticle details

The cross section of MWNTs

TEM image of polymer +montmorillonite

TEM image of MWNTs

The cross carbon section of

HRTEM image of polymer+montmorillonit

Structural analysis of nanocomposites

MWNTs

TEM image of carbon nanofibres

TEM analysis of carbon nanofibres - tubular structure

Optical images (X200) representing a sample of carbon fibre/epoxy matrix with 2% nanocarbon (C_2H_2/C_2H_4)

Optical images (X200) representing a sample of carbon fiber/epoxy matrix

TEM image- delamination of montmorillonite

CONCLUSIONS

- characteristics of the obtained nanocomposite are affected by properties and dispersion of the addition material;
- the morphology of the carbon nanopowder depends on both gas mixture and experimental parameters;
- optimal concentration of the filler was around 2% (wt);
 epoxy/nanostructured filler (nanocarbon layered clay) composites show superior mechanic and tribologic characteristics;
- better results obtained by addition of laser-synthesized carbon nanopowder;
 spectacular decrease of water absorption when nanocarbon and layered clays were added;
- the additional reinforcement with carbon/glass fibres led to an important enhancement of mechanic characteristics;
 the studies are in progress.